Skip to content
2000
Volume 18, Issue 6
  • ISSN: 2666-1454
  • E-ISSN: 2666-1462

Abstract

Green nanoparticle synthesis has recently gained popularity due to its sustainability and environmental friendliness. This technology employs natural resources such as plants, fungi, bacteria, and algae to produce nanoparticles with beneficial properties. This study aims to investigate the ecologically friendly production of nanoparticles and their potential use in forensic investigation. Green nanoparticle synthesis methods provide several advantages over standard chemical synthesis processes, including less environmental impact, cheaper costs, and the lack of toxic compounds. Nanoparticles have been successfully manufactured utilizing a wide range of plant extracts, including those obtained from medicinal plants. Furthermore, nanoparticles with enhanced properties have been developed employing microorganisms and their metabolites. Nanoparticles made with environmentally benign technology have shown significant promise in the realm of forensic study. These nanoparticles can be employed in forensic analysis methods such as document authentication, DNA profiling, and fingerprint identification. They are ideal candidates for boosting the sensitivity and selectivity of forensic investigations because of their unique physicochemical properties, which include a large surface area, variable size, and great stability. Furthermore, to enable specialized detection and imaging of Latent fingerprints (forensic evidence), green-synthesized nanoparticles can be functionalized with certain ligands or biomolecules. This paper provides an overview of metal, metal oxide, and fluorescent green nanoparticle manufacturing and their uses in forensic science as latent fingerprint development.

Loading

Article metrics loading...

/content/journals/cms/10.2174/0126661454313988240812111355
2024-08-28
2025-12-07
Loading full text...

Full text loading...

References

  1. MansooriG.A. Principles of nanotechnology: Molecular-based study of condensed matter in small systems.World Scientific200510.1142/5749
    [Google Scholar]
  2. AseriV. NagarV. GodaraV. A comparative study on scanned fingerprint after applying lubricants and without scanned fingerprint on porous surface; (white paper).Mater. Today Proc.2022691515153110.1016/j.matpr.2022.04.007
    [Google Scholar]
  3. DvirT. TimkoB.P. KohaneD.S. LangerR. Nanotechnological strategies for engineering complex tissues.Nat. Nanotechnol.201161132210.1038/nnano.2010.246 21151110
    [Google Scholar]
  4. SharmaA. Latent fingerprint development from magnetic nanoparticles.In: Friction Ridge Analysis: Applications of Nanoparticles for Latent Fingerprint Development.Springer2023394610.1007/978‑981‑99‑4028‑8_3
    [Google Scholar]
  5. SinghT. Biosynthesized nanoparticles and its implications in agriculture.In: Biological synthesis of nanoparticles and their applications.CRC Press201925727410.1201/9780429265235‑19
    [Google Scholar]
  6. AwasthiK.K. Friction Ridge Analysis: Applications of Nanoparticles for Latent Fingerprint Development.Springer202310.1007/978‑981‑99‑4028‑8
    [Google Scholar]
  7. MayerK.M. HafnerJ.H. Localized surface plasmon resonance sensors.Chem. Rev.201111163828385710.1021/cr100313v 21648956
    [Google Scholar]
  8. CaoY.C. JinR. MirkinC.A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection.Science200229755861536154010.1126/science.297.5586.1536 12202825
    [Google Scholar]
  9. ChampodC. Fingerprints and other ridge skin impressions.CRC press201710.1201/b20423
    [Google Scholar]
  10. SinghA. Role of nanotechnology in latent fingerprint development.In: Friction Ridge Analysis: Applications of Nanoparticles for Latent Fingerprint Development.Springer202311610.1007/978‑981‑99‑4028‑8_1
    [Google Scholar]
  11. WangZ. ZhangP. LiuH. Robust serum albumin-responsive AIEgen enables latent bloodstain visualization in high resolution and reliability for crime scene investigation.ACS Appl. Mater. Interfaces20191119173061731210.1021/acsami.9b04269 31020832
    [Google Scholar]
  12. BhagatD.S. SuryawanshiI.V. GurnuleW.B. SawantS.S. ChavanP.B. Greener synthesis of CuO nanoparticles for enhanced development of latent fingerprints.Mater. Today Proc.20213674775010.1016/j.matpr.2020.05.357
    [Google Scholar]
  13. RohatgiR. KapoorA.K. Development of latent fingerprints on wet non-porous surfaces with SPR based on basic fuchsin dye.Egypt. J. Forensic Sci.20166217918410.1016/j.ejfs.2015.05.007
    [Google Scholar]
  14. BakerL.B. Physiology of sweat gland function: The roles of sweating and sweat composition in human health.Temperature20196321125910.1080/23328940.2019.1632145 31608304
    [Google Scholar]
  15. KumarS. RaiS.B. RathC. Latent fingerprint imaging using Dy and Sm codoped HfO2 nanophosphors: Structure and luminescence properties.Part. Part. Syst. Charact.2019366190004810.1002/ppsc.201900048
    [Google Scholar]
  16. RanX. WangZ. ZhangZ. PuF. RenJ. QuX. Nucleic-acid-programmed Ag-nanoclusters as a generic platform for visualization of latent fingerprints and exogenous substances.Chem. Commun.201652355756010.1039/C5CC08534A 26537157
    [Google Scholar]
  17. SpindlerX. HofstetterO. McDonaghA.M. RouxC. LennardC. Enhancement of latent fingermarks on non-porous surfaces using anti-l-amino acidantibodies conjugated to gold nanoparticles.Chem. Commun.201147195602560410.1039/C0CC05748G 21455541
    [Google Scholar]
  18. SankhlaM.S. VermaR.K. NagarV. Eggshell nanosheets: Synthesis, properties, and their forensic applications in latent friction ridges development.Macromol. Symp.20244131230003810.1002/masy.202300038
    [Google Scholar]
  19. ZhangX.F. LiuZ.G. ShenW. GurunathanS. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches.Int. J. Mol. Sci.2016179153410.3390/ijms17091534 27649147
    [Google Scholar]
  20. PrasadV. LukoseS. AgarwalP. PrasadL. Role of nanomaterials for forensic investigation and latent fingerprinting—a review.J. Forensic Sci.2020651263610.1111/1556‑4029.14172 31454084
    [Google Scholar]
  21. RayP.C. Size and shape dependent second order nonlinear optical properties of nanomaterials and their application in biological and chemical sensing.Chem. Rev.201011095332536510.1021/cr900335q 20469927
    [Google Scholar]
  22. BakandS. HayesA. DechsakulthornF. Nanoparticles: A review of particle toxicology following inhalation exposure.Inhal. Toxicol.201224212513510.3109/08958378.2010.642021 22260506
    [Google Scholar]
  23. LateefA OjoSA ElegbedeJAJNR The emerging roles of arthropods and their metabolites in the green synthesis of metallic nanoparticles.20165660122
    [Google Scholar]
  24. DuanH. WangD. LiY. Green chemistry for nanoparticle synthesis.Chem. Soc. Rev.201544165778579210.1039/C4CS00363B 25615873
    [Google Scholar]
  25. De MeesterN. GingoldR. RigauxA. DeryckeS. MoensT. Cryptic diversity and ecosystem functioning: A complex tale of differential effects on decomposition.Oecologia2016182255957110.1007/s00442‑016‑3677‑3 27337962
    [Google Scholar]
  26. DuL XianL FengJ-XJJNR Rapid extra-/intracellular biosynthesis of gold nanoparticles by the fungus Penicillium sp20111392130
    [Google Scholar]
  27. DuránN. MarcatoP.D. AlvesO.L. De SouzaG.I.H. EspositoE. Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains.J. Nanobiotechnology200531810.1186/1477‑3155‑3‑8 16014167
    [Google Scholar]
  28. AbebeB. Latent fingerprint enhancement techniques: A review.J Chem Rev202021405610.33945/SAMI/JCR.2020.1.3
    [Google Scholar]
  29. RayI.L. SchubertA. WalleniusM. The concept of a’microstructural fingerprint’for the characterization of samples in nuclear forensic science.IAEA2003
    [Google Scholar]
  30. SametbandM. ShwekyI. BaninU. MandlerD. AlmogJ. Application of nanoparticles for the enhancement of latent fingerprints.Chem. Commun.2007111142114410.1039/b618966k 17347719
    [Google Scholar]
  31. ChoiM.J. McBeanK.E. NgP.H.R. An evaluation of nanostructured zinc oxide as a fluorescent powder for fingerprint detection.J. Mater. Sci.200843273273710.1007/s10853‑007‑2178‑5
    [Google Scholar]
  32. BarrosR.M. BonattoC.C. RamadaM.H.S. SilvaL.P. Surface-assisted laser desorption/ionization mass spectrometry analysis of latent fingermarks using greenly synthesized silver nanoparticles.Surfaces20236434135010.3390/surfaces6040024
    [Google Scholar]
  33. DeepthiN.H. DarshanG.P. BasavarajR.B. Nanostructured stannic oxides for white light emitting diodes provides authentication for latent fingerprints visualization under diverse environmental conditions.ACS Sustain. Chem.& Eng.20197157859110.1021/acssuschemeng.8b04109
    [Google Scholar]
  34. BrandãoM.S. JesusJ.R. de AraújoA.R. Acetylated cashew-gum-based silver nanoparticles for the development of latent fingerprints on porous surfaces.Environ. Nanotechnol. Monit. Manag.20201410038310.1016/j.enmm.2020.100383
    [Google Scholar]
  35. AssisA.M.L. CostaC.V. AlvesM.S. From nanomaterials to macromolecules: Innovative technologies for latent fingerprint development.WIREs Forensic Sci.202352e147510.1002/wfs2.1475
    [Google Scholar]
  36. BhatiK. TripathyD.B. Role of nanoparticles in latent fingerprinting: An update. Lett. Appl.NanoBioSci2020914271443
    [Google Scholar]
  37. Kumar SurU. AnkamwarB. KarmakarS. HalderA. DasP. Green synthesis of Silver nanoparticles using the plant extract of Shikakai and Reetha.Mater. Today Proc.2018512321232910.1016/j.matpr.2017.09.236
    [Google Scholar]
  38. MadhavanA.A. SharmaB.K. Latent fingerprint development with biosynthesized Nano rust.2019 Advances in Science and Engineering Technology International Conferences (ASET),Dubai, United Arab Emirates, 26 March 2019 - 10 April 2019, pp. 1-4.10.1109/ICASET.2019.8714290
    [Google Scholar]
  39. IctenO. Oxide nanoparticles for development of fingerprints.In: Friction Ridge Analysis: Applications of Nanoparticles for Latent Fingerprint Development.SingaporeSpringer202310.1007/978‑981‑99‑4028‑8_6
    [Google Scholar]
  40. VermaR.K. NagarV. AseriV. Zinc oxide (ZnO) nanoparticles: Synthesis properties and their forensic applications in latent fingerprints development.Mater. Today Proc.202269364110.1016/j.matpr.2022.08.074
    [Google Scholar]
  41. BabuK.R.V. RenukaC.G. BasavarajR.B. DarshanG.P. NagabhushanaH. One pot synthesis of TiO2:Eu3+ hierarchical structures as a highly specific luminescent sensing probe for the visualization of latent fingerprints.J. Rare Earths201937213414410.1016/j.jre.2018.05.019
    [Google Scholar]
  42. PrabakaranE. PillayK. Synthesis and characterization of fluorescent N-CDs/ZnONPs nanocomposite for latent fingerprint detection by using powder brushing method.Arab. J. Chem.20201323817383510.1016/j.arabjc.2019.01.004
    [Google Scholar]
  43. PrabakaranE. PillayK. Nanomaterials for latent fingerprint detection: A review.J. Mater. Res. Technol.2021121856188510.1016/j.jmrt.2021.03.110
    [Google Scholar]
  44. BasavarajR.B. DarshanG.P. Daruka PrasadB. SharmaS.C. NagabhushanaH. Rapid visualization of latent fingerprints using novel CaSiO3: Sm3+ nanophosphors fabricated via ultrasound route.J. Rare Earths2019371324410.1016/j.jre.2018.04.019
    [Google Scholar]
  45. HassaanM.A. El NemrA. RagabS. Green synthesis and application of metal and metal oxide nanoparticles.In: Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications.ChamSpringer2020831857
    [Google Scholar]
  46. AkinteluS.A. OyebamijiA.K. OlugbekoS.C. FolorunsoA.S. Green synthesis of iron oxide nanoparticles for biomedical application and environmental remediation: A review.Eclét. Quím.2021464173710.26850/1678‑4618eqj.v46.4.2021.p17‑37
    [Google Scholar]
  47. AhmadW. Chandra BhattS. VermaM. KumarV. KimH. A review on current trends in the green synthesis of nickel oxide nanoparticles, characterizations, and their applications.Environ. Nanotechnol. Monit. Manag.20221810067410.1016/j.enmm.2022.100674
    [Google Scholar]
  48. SharmaV. ChoudharyS. MankotiaP. Nanoparticles as fingermark sensors.Trends Analyt. Chem.202114311637810.1016/j.trac.2021.116378
    [Google Scholar]
  49. RajanR. Green chemistry synthesis of nanostructured zinc oxide powder using azadirachta indica extract for latent fingermark development.Malays J Med Health Sci202016
    [Google Scholar]
  50. VijayaramS. Applications of green synthesized metal nanoparticles-A review.Biol. Trace Elem. Res.20242021360386 37046039
    [Google Scholar]
  51. ShivananjaiahH.N. Sailaja KumariK. GeethaM.S. Green mediated synthesis of lanthanum doped zinc oxide: Study of its structural, optical and latent fingerprint application.J. Rare Earths202038121281128710.1016/j.jre.2020.07.012
    [Google Scholar]
  52. SekarA. VadivelR. MunuswamyR.G. YadavR. Fluorescence spotting of latent sweat fingerprints with zinc oxide carbon dots embedded in a silica gel nanopowder: A green approach.New J. Chem.20214537174471746010.1039/D1NJ03901F
    [Google Scholar]
  53. Fouda-MbangaB.G. PillayK. Tywabi-NgevaZ. Novel development of zinc oxide–coated carbon nanoparticles from pineapple leaves using sol gel method for optimal adsorption of Cu2+ and reuse in latent fingerprint application.Environ. Sci. Pollut. Res. Int.20233127388013882010.1007/s11356‑023‑25474‑y 36811786
    [Google Scholar]
  54. UpadhyayP. RaghavanA. Ayyappan ShanmuganathanM.A. RadhakrishnanM. ChakravartyS. GhoshS. Gynura cusimba‐derived nitrogen‐doped carbon Dots/ZnO nanocomposite: A biocompatible alternative for detecting latent fingerprints.ChemNanoMat202399e20230016910.1002/cnma.202300169
    [Google Scholar]
  55. AmruthaV.S. AnantharajuK.S. PrasannaD.S. Enhanced Sunlight driven photocatalytic performance and visualization of latent fingerprint by green mediated ZnFe2O4–RGO nanocomposite.Arab. J. Chem.20201311449146510.1016/j.arabjc.2017.11.016
    [Google Scholar]
  56. LiH. GuoX. LiuJ. LiF. A synthesis of fluorescent starch based on carbon nanoparticles for fingerprints detection.Opt. Mater.20166040441010.1016/j.optmat.2016.08.010
    [Google Scholar]
  57. EskalenH. ÇeşmeM. KerliS. ÖzğanŞ. Green synthesis of water-soluble fluorescent carbon dots from rosemary leaves: Applications in food storage capacity, fingerprint detection, and antibacterial activity.J. Chem. Res.2021455-642843510.1177/1747519820953823
    [Google Scholar]
  58. RajanR. Fluorescent variant of silica nanoparticle powder synthesised from rice husk for latent fingerprint development.Egypt. J. Forensic Sci.2019919
    [Google Scholar]
/content/journals/cms/10.2174/0126661454313988240812111355
Loading
/content/journals/cms/10.2174/0126661454313988240812111355
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test