Skip to content
2000
Volume 18, Issue 6
  • ISSN: 2666-1454
  • E-ISSN: 2666-1462

Abstract

This work explores shear deformation theories related to beams in detail and provides a careful analytical evaluation. There are various theories related to the Deformation in Shear action that are painstakingly traced throughout the review in detail. Every hypothesis is systematically assessed, taking into account both its advantages and disadvantages. The study thoroughly examines the results generated by each theory and explores the general approaches to solving problems that result from their use. The evaluation also offers a thorough overview and recommendations for further lines of inquiry. The primary goals of this review are to encourage the continued application of higher-order theories in deep beam behavior prediction and to further our understanding of their development.

Loading

Article metrics loading...

/content/journals/cms/10.2174/0126661454291237240829103254
2024-09-06
2025-12-07
Loading full text...

Full text loading...

References

  1. BernoulliJ. Curvature of an elastic plate.Acta Eruditorum Lipsiae1694262276
    [Google Scholar]
  2. BernoulliJ. Explicationes, annotations et additions.Acta Eruditorum Lipsiae16951695537553
    [Google Scholar]
  3. BernoulliJ. True hypothesis of the resistance of solids, with the demonstration of the curvature of the bodies which spring.Memoirs of mathematics and physics of the Royal Academy of Sciences1705Available from: https://hal.science/ads-00108004
    [Google Scholar]
  4. EulerL. A method of finding curved lines enjoying the property of maximum minimization.Lausanne, GenevaBousquet1744
    [Google Scholar]
  5. Saint-Venantde. Memory on the bending of prisms, on the transverse and longitudinal sliding which accompanies it when it does not operate uniformly or in an arc of a circle, and on the curved shape then affected by their originally flat cross sections.J. pure appl. math.1856189189
    [Google Scholar]
  6. RankineW.J.M. A Manual of Applied Mechanics.London, U. K.R. Griffin and Company Ltd.1858342344
    [Google Scholar]
  7. BresseJ.A.C. Course in applied mechanics, taught at the Imperial School of Bridges and Roads.ParisGauthier-Villars18591866
    [Google Scholar]
  8. RebelloC.A. BertC.W. GordaninejadF. Vibration of bimodular sandwich beams with thick facings: A new theory and experimental results.J. Sound Vibrat.198390338139710.1016/0022‑460X(83)90720‑4
    [Google Scholar]
  9. RayleighJ.W.S.B. The theory of sound.Macmillan18962
    [Google Scholar]
  10. TimoshenkoS.P. LXVI. On the correction for shear of the differential equation for transverse vibrations of prismatic bars.Lond. Edinb. Dublin Philos. Mag. J. Sci.19214124574474610.1080/14786442108636264
    [Google Scholar]
  11. LoveA.E.H. The Mathematical Theory of Elasticity.Dover PublicationsNew York1944
    [Google Scholar]
  12. Gol’denveizerA.L. Methods for justifying and refining the theory of shells (Survey of recent results).J. Appl. Math. Mech.196832470471810.1016/0021‑8928(68)90100‑7
    [Google Scholar]
  13. KilʹchevskiĭNA Fundamentals of the analytical mechanics of shells.1965Available From: https://apps.dtic.mil/sti/tr/pdf/ADA400697.pdf
  14. DonnellL.H. Beams, Plates and Shells.New YorkMcGraw-Hill Book Company1976453
    [Google Scholar]
  15. SayirM. MitropoulosC. On elementary theories of linear elastic beams, plates and shells.ZAMP198031155
    [Google Scholar]
  16. DymC.L. ShamesI.H. Solid mechanics.NY, USAMcGraw-Hill197319
    [Google Scholar]
  17. KURODAMichio. AKIYAMAKazuo. Timoshenko's shear coefficient for flexural vibrations of beams.Proc. JSME.2003512312410.1299/jsmemecjo.2003.5.0_123.
    [Google Scholar]
  18. CowperG.R. The shear coefficient in Timoshenko’s beam theory.J. Appl. Mech.196633233534010.1115/1.3625046
    [Google Scholar]
  19. CowperG.R. On the accuracy of Timoshenko’s beam theory.J. Eng. Mech. Div.19689461447145410.1061/JMCEA3.0001048
    [Google Scholar]
  20. MurtyA.K. Vibrations of short beams.AIAA J.197081343810.2514/3.5602
    [Google Scholar]
  21. MurtyA.K. Analysis of short beams.AIAA J.19708112098210010.2514/3.6067
    [Google Scholar]
  22. HutchinsonJR ZillmerSD On the transverse vibration of beams of rectangular cross-section.Trans. ASME. J Appl Mech1986531394410.1115/1.3171735
    [Google Scholar]
  23. T Kaneko On Timoshenko’s correction for shear in vibrating beams.J. Phys. D Appl. Phys.19758161927193610.1088/0022‑3727/8/16/003
    [Google Scholar]
  24. HutchinsonJ.R. Transverse vibrations of beams, exact versus approximate solutions. Trans. ASME. J. Appl. Mech.198148492392810.1115/1.3157757
    [Google Scholar]
  25. RychterZ. On the shear coefficient in beam bending.Mech. Res. Commun.1987145-637938510.1016/0093‑6413(87)90059‑0
    [Google Scholar]
  26. RychterZ. An engineering theory for beam bending.Ingenieur-Archiv1988581253410.1007/BF00537197
    [Google Scholar]
  27. StephenN.G. LevinsonM. A second order beam theory.J. Sound Vibrat.197967329330510.1016/0022‑460X(79)90537‑6
    [Google Scholar]
  28. RentonJ.D. Generalized beam theory applied to shear stiffness.Int. J. Solids Struct.199127151955196710.1016/0020‑7683(91)90188‑L
    [Google Scholar]
  29. FanH. WideraG.E.O. Refined engineering beam theory based on the asymptotic expansion approach.AIAA J.199129344444910.2514/3.10598
    [Google Scholar]
  30. KathnelsonA.N. Improved engineering theory for uniform beams.Acta Mech.19961141-422522910.1007/BF01170406
    [Google Scholar]
  31. ZaslavskyA. On the limitations of the shearing stress formula.Int. J. Mech. Eng. Educ.198081319
    [Google Scholar]
  32. SolerA. Higher order effects in thick rectangular elastic beams.Int. J. Solids Struct.19684772373910.1016/0020‑7683(68)90072‑3
    [Google Scholar]
  33. IyengarK.T.S.R. PrabhakaraM.K. Analysis of continuous beams—a three dimensional elasticity solution.Int. J. Eng. Sci.19686419320810.1016/0020‑7225(68)90040‑2
    [Google Scholar]
  34. TsaiH. SolerA.I. Approximate theory for locally loaded plane orthotropic beams.Int. J. Solids Struct.1970681055106810.1016/0020‑7683(70)90047‑8
    [Google Scholar]
  35. EssenburgF. On the significance of the inclusion of the effect of transverse normal strain in problems involving beams with surface constraints.J. Appl. Mech.197542112713210.1115/1.3423502
    [Google Scholar]
  36. LeechC.M. Beam theories: a variational approach.Int. J. Mech. Eng. Educ.197758187
    [Google Scholar]
  37. SilvermanI.K. Flexure of laminated beams.J. Struct. Div.1980106371172510.1061/JSDEAG.0005389
    [Google Scholar]
  38. LevinsonM. A new rectangular beam theory.J. Sound Vibrat.1981741818710.1016/0022‑460X(81)90493‑4
    [Google Scholar]
  39. LevinsonM. On Bickford’s consistent higher order beam theory.Mech. Res. Commun.19851211910.1016/0093‑6413(85)90027‑8
    [Google Scholar]
  40. BickfordW.B. A consistent higher order beam theory.SECTAM198211137150
    [Google Scholar]
  41. RychterZ. On the accuracy of a beam theory.Mech. Res. Commun.19871429910510.1016/0093‑6413(87)90024‑3
    [Google Scholar]
  42. RychterZ. A simple and accurate beam theory.Acta Mech.1988751-4576210.1007/BF01174627
    [Google Scholar]
  43. PetrolitoJ. Stiffness analysis of beams using a higher-order theory.Comput. Struc.1995551333910.1016/0045‑7949(94)00505‑W
    [Google Scholar]
  44. RehfieldL.W. MurthyP.L.N. Toward a new engineering theory of bending - Fundamentals.AIAA J.198220569369910.2514/3.7938
    [Google Scholar]
  45. RychterZ. An error estimate for solutions in beam theory..Z. Angew. Math. Mech.1987673205207
    [Google Scholar]
  46. BaluchM.H. AzadA.K. KhidirM.A. Technical theory of beams with normal strain.J. Eng. Mech.198411081233123710.1061/(ASCE)0733‑9399(1984)110:8(1233)
    [Google Scholar]
  47. ValisettyR.R. Refined bending theory for beams of circular cross section.J. Eng. Mech.199011692072207910.1061/(ASCE)0733‑9399(1990)116:9(2072)
    [Google Scholar]
  48. MurtyA.V.K. Toward a consistent beam theory.AIAA J.198422681181610.2514/3.8685
    [Google Scholar]
  49. IrretierH. Refined effects in beam theories and their influence on the natural frequencies of beams. Refined dynamical theories of beams, plates and shells and their applications.Proc. Euromech-Colloquium198621963179
    [Google Scholar]
  50. HeyligerP.R. ReddyJ.N. A higher order beam finite element for bending and vibration problems.J. Sound Vibrat.1988126230932610.1016/0022‑460X(88)90244‑1
    [Google Scholar]
  51. KantT. GuptaA. A finite element model for a higher-order shear-deformable beam theory.J. Sound Vibrat.1988125219320210.1016/0022‑460X(88)90278‑7
    [Google Scholar]
  52. IrschikH. Analogy between refined beam theories and the Bernoulli-Euler theory.Int. J. Solids Struct.19912891105111210.1016/0020‑7683(91)90105‑O
    [Google Scholar]
  53. WangC.M. ReddyJ.N. LeeK.H. Shear deformable beams and plates: Relationships with classical solutions.Elsevier2000
    [Google Scholar]
  54. DufortL. DrapierS. GrédiacM. Closed-form solution for the cross-section warping in short beams under three-point bending.Compos. Struct.200152223324610.1016/S0263‑8223(00)00171‑9
    [Google Scholar]
  55. GaoY. WangM.Z. A refined beam theory based on the refined plate theory.Acta Mech.20051771-419119710.1007/s00707‑005‑0223‑5
    [Google Scholar]
  56. GhugalY.M. A new refined bending theory for thick beam including transverse shear and transverse normal strain effects.Departmental Report, Applied Mechanics Department, Government Collage of Engineering, Aurangabad, India2006196
    [Google Scholar]
  57. GhugalY.M. A higher order shear deformation theory for bending of thick beam. Departmental report, no. 3.Applied of Mechanics Department, Government College of Engineering, Aurangabad, India2006196
    [Google Scholar]
  58. GhugalYM A Trigonometric shear deformation theory for flexure and free vibration of isotropic thick beams. Departmental report, No. 4.Applied of Mechanics Department, Government College of Engineering2007195
    [Google Scholar]
  59. SonawaneS.J. GhugalY.M. Flexural Analysis of thick beam including transverse shear and transverse flexibility. Departmental report.Department of Applied Mechanics, Government Engineering College Aurangabad, India2006195
    [Google Scholar]
  60. GaoY. XuS.P. ZhaoB.S. Boundary conditions for elastic beam bending.C. R. Mec.200633511610.1016/j.crme.2006.11.001
    [Google Scholar]
  61. GhugalY.M. DahakeA.J. A trigonometric shear deformation theory for flexure of thick beams.Procedia Eng.2013201317
    [Google Scholar]
  62. GhugalY.M. ShimpiR.P. A review of refined shear deformation theories for isotropic and anisotropic laminated beams.J. Reinf. Plast. Compos.200120325527210.1177/073168401772678283
    [Google Scholar]
  63. GhugalY.M. SharmaR. A hyperbolic shear deformation theory for flexure and vibration of thick isotropic beams.Int. J. Comput. Methods20096458560410.1142/S0219876209002017
    [Google Scholar]
  64. GhugalY.M. SharmaR. A refined shear deformation theory for flexure of thick beams.Lat. Am. J. Solids Struct.20118218319510.1590/S1679‑78252011000200005
    [Google Scholar]
  65. GhugalY. M. WagheU. P. Flexural analysis of deep beams using trigonometric shear deformation theory.2011922430Available from: https://www.researchgate.net/publication/283141885_Flexural_analysis_of_deep_beams_using_trigonometric_shear_deformation_theory
    [Google Scholar]
  66. ShiG. VoyiadjisG.Z. A sixth-order theory of shear deformable beams with variational consistent boundary conditions.J. Appl. Mech.201178202101910.1115/1.4002594
    [Google Scholar]
  67. SayyadA. S. GhugalY. M. Flexure of thick beams using new hyperbolic shear deformation theory.Int. J. Mech.201153113122
    [Google Scholar]
  68. GhugalY.M. DahakeA.G. Flexural analysis of deep beam subjected to parabolic load using refined shear deformation theory.Applied and Computational MechanicsPilsen, Czech RepublicUniversity of West Bohemia201262163172
    [Google Scholar]
  69. GhugalY.M. DahakeA.G. Flexure of simply supported thick beams using refined shear deformation theory.Int. J. Environ. Eng20137199108
    [Google Scholar]
  70. SawantM.K. DahakeA.G. A new hyperbolic shear deformation theory for analysis of thick beam.Int. J. Innov. Res. Sci. Eng. Technol.20143296369643
    [Google Scholar]
  71. ManalS.S. SawantR.M. DahakeA.G. A new trigonometric shear deformation theory for thick fixed beam.Int. J. Engine Res.201653532536
    [Google Scholar]
  72. JadhavV.A. DahakeA.G. Bending analysis of deep beam using refined shear deformation theory.Int. J. Engine Res.20165526531
    [Google Scholar]
  73. GhugalY.M. DahakeA.G. Flexure of narrow rectangular deep beams with built-in ends.J. Struct. Eng2019456497511
    [Google Scholar]
  74. DahakeA. MahajanS. ManeA. ShaikhS. Effect of prop in cantilever thick beam using trigonometric shear deformation theory.In: ICRRM 2019–System Reliability, Quality Control, Safety, Maintenance and Management202025726210.1007/978‑981‑13‑8507‑0_38.
    [Google Scholar]
  75. WuC.P. XuZ.R. Strong and weak formulations of a mixed higher-order shear deformation theory for the static analysis of functionally graded beams under thermo-mechanical loads.J. Compos. Sci.20204415810.3390/jcs4040158
    [Google Scholar]
  76. MagnuckiK. LewinskiJ. Magnucka-BlandziE. An improved shear deformation theory for bending beams with symmetrically varying mechanical properties in the depth direction.Acta Mech.2020231104381439510.1007/s00707‑020‑02763‑y
    [Google Scholar]
  77. AvcarM. HadjiL. CivalekÖ. Natural frequency analysis of sigmoid functionally graded sandwich beams in the framework of high order shear deformation theory.Compos. Struct.202127611456410.1016/j.compstruct.2021.114564
    [Google Scholar]
  78. SohaniF. EipakchiH.R. Nonlinear geometry effects investigation on free vibrations of beams using shear deformation theory.Mech. Based Des. Struct. Mach.20235131446146710.1080/15397734.2021.1872385
    [Google Scholar]
  79. SayyadA.S. AvhadP.V. A new higher order shear and normal deformation theory for the free vibration analysis of sandwich curved beams.Compos. Struct.202228011494810.1016/j.compstruct.2021.114948
    [Google Scholar]
  80. AvhadP.V. SayyadA.S. On the deformation of laminated composite and sandwich curved beams.Curved Layer. Struct.20229111210.1515/cls‑2022‑0001
    [Google Scholar]
  81. ChitourM. BouhadraA. BouradaF. MamenB. BousahlaA.A. TounsiA. TounsiA. SalemM.A. KhedherK.M. Stability analysis of imperfect FG sandwich plates containing metallic foam cores under various boundary conditions.Structures20246110602110.1016/j.istruc.2024.106021
    [Google Scholar]
  82. LafiD.E. BouhadraA. MamenB. MenasriaA. BouradaM. BousahlaA.A. YaylaciM. Combined influence of variable distribution models and boundary conditions on the thermodynamic behavior of FG sandwich plates lying on various elastic foundations.Struct. Eng. Mech.2024892103
    [Google Scholar]
  83. TounsiA. BousahlaA.A. TahirS.I. MostefaA.H. BouradaF. Al-OstaM.A. TounsiA. Influences of different boundary conditions and hygro-thermal environment on the free vibration responses of FGM sandwich plates resting on viscoelastic foundation.Int. J. Struct. Stab. Dyn.20242411245011710.1142/S0219455424501177
    [Google Scholar]
  84. TounsiA. MostefaA.H. BousahlaA.A. TounsiA. GhazwaniM.H. BouradaF. BouhadraA. Thermodynamical bending analysis of P-FG sandwich plates resting on nonlinear visco-Pasternak’s elastic foundations.Steel Compos. Struct.2023493307323
    [Google Scholar]
  85. MudhaffarI.M. ChikhA. TounsiA. Al-OstaM.A. Al-ZahraniM.M. Al-DulaijanS.U. Impact of viscoelastic foundation on bending behavior of FG plate subjected to hygro-thermo-mechanical loads.Struct. Eng. Mech.2023862167180
    [Google Scholar]
  86. AmarL.H.H. BouradaF. BousahlaA.A. TounsiA. BenrahouK.H. AlbalawiH. TounsiA. Buckling analysis of FG plates via 2D and quasi-3D refined shear deformation theories.Struct. Eng. Mech.2023856765780
    [Google Scholar]
  87. BounouaraF. AldosariS.M. ChikhA. KaciA. BousahlaA.A. BouradaF. AlbalawiH. The effect of visco-Pasternak foundation on the free vibration behavior of exponentially graded sandwich plates with various boundary conditions.Steel. Compos. Struct.2023463367383
    [Google Scholar]
  88. BouafiaK. SelimM.M. BouradaF. BousahlaA.A. BouradaM. TounsiA. TounsiA. Bending and free vibration characteristics of various compositions of FG plates on elastic foundation via quasi 3D HSDT model.Steel. Compos. Struct.2021414487503
    [Google Scholar]
  89. KouiderD. KaciA. SelimM.M. BousahlaA.A. BouradaF. TounsiA. HussainM. An original four-variable quasi-3D shear deformation theory for the static and free vibration analysis of new type of sandwich plates with both FG face sheets and FGM hard core.Steel. Compos. Struct.2021412167191
    [Google Scholar]
  90. JinQ. HuX. RenY. JiangH. On static and dynamic snap-throughs of the imperfect post-buckled FG-GRC sandwich beams.J. Sound Vibrat.202048911568410.1016/j.jsv.2020.115684
    [Google Scholar]
  91. JinQ. RenY. Coupled resonance of FGM nanotubes transporting super-critical high-speed pulsatile flow under forced vibration: size-dependence and bifurcation topology.Comput. Methods Appl. Mech. Eng.202340411583410.1016/j.cma.2022.115834
    [Google Scholar]
  92. JinQ. RenY. PengF. JiangH. Imperfection sensitivity of free vibration of symmetrically/anti-symmetrically laminated FRC beams in thermally pre-and post-buckling equilibrium states.Acta Astronaut.202017324025110.1016/j.actaastro.2020.04.024
    [Google Scholar]
  93. IcardiU. A three-dimensional zig-zag theory for analysis of thick laminated beams.Compos. Struct.200152112313510.1016/S0263‑8223(00)00189‑6
    [Google Scholar]
  94. JinQ. RenY. Nonlinear size-dependent bending and forced vibration of internal flow-inducing pre- and post-buckled FG nanotubes.Commun. Nonlinear Sci. Numer. Simul.202210410604410.1016/j.cnsns.2021.106044
    [Google Scholar]
  95. JinQ. RenY. YuanF.G. Combined resonance of pulsatile flow-transporting FG nanotubes under forced excitation with movable boundary.Nonlinear Dyn.202311176157617810.1007/s11071‑022‑08148‑1
    [Google Scholar]
/content/journals/cms/10.2174/0126661454291237240829103254
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test