Skip to content
2000
Volume 18, Issue 6
  • ISSN: 2666-1454
  • E-ISSN: 2666-1462

Abstract

Hydrogel biomaterials, which are formed from polymers generated from either natural or synthetic sources, are characterized by their mechanical stability as well as their biological acceptability. Hydrogels are characterized by properties such as a high swelling index, biocompatibility, the ability to be easily manipulated, flexibility, and rapid degradation. Hydrogels are commonly used as drug carriers due to the fact that they are simple to produce and may be applied by themselves. Using hydrogels in drug delivery applications, where gel-based nanocarriers delivery drug molecules to the area of interest in living tissues. The research community is interested in preparing hydrogel because of the unique physical and chemical properties that hydrogels possess. It has been discussed that several new hydrogel-based solutions are being employed for the administration of drugs that are not taken orally. Hydrogel systems can be developed for use in either passive or active drug administration, making them suitable for a broad variety of settings and applications. In addition to possessing essential biocompatible properties, hydrogels are able to move freely within the human body without having any visible impact on the surrounding environment. The present review has been developed to examine novel concepts linked to hydrogels and their delivery mechanism. This is due to the fact that hydrogels possess qualities that are both unique and novel. In this article, the mechanics of drug delivery systems that are based on hydrogels are detailed. These processes include loading, releasing, and targeting. For these components, the development and investigation of cutting-edge hydrogel-based delivery systems is necessary.

Loading

Article metrics loading...

/content/journals/cms/10.2174/0126661454297401240228064500
2024-03-12
2025-12-07
Loading full text...

Full text loading...

References

  1. El-HusseinyH.M. MadyE.A. HamabeL. Smart/] stimuli-responsive hydrogels: Cutting-edge platforms for tissue engineering and other biomedical applications.Mater. Today Bio20221310018610.1016/j.mtbio.2021.10018634917924
    [Google Scholar]
  2. AlmawashS. OsmanS.K. MustafaG. El HamdM.A. Current and future prospective of injectable hydrogels—design challenges and limitations.Pharmaceuticals202215337110.3390/ph1503037135337169
    [Google Scholar]
  3. KaliarajG. ShanmugamD. DasanA. MosasK. Hydrogels—A promising materials for 3D printing technology.Gels20239326010.3390/gels903026036975708
    [Google Scholar]
  4. ChakrapaniG. ZareM. Materials advances intelligent hydrogels and their biomedical applications.Mater. Adv.202277577772
    [Google Scholar]
  5. DsouzaA. ConstantinidouC. ArvanitisT.N. HaddletonD.M. CharmetJ. HandR.A. Multifunctional composite hydrogels for bacterial capture, growth/elimination, and sensing applications.ACS Appl. Mater. Interfaces20221442473234734410.1021/acsami.2c0858236222596
    [Google Scholar]
  6. GamboaJ. Paulo-MirasolS. EstranyF. TorrasJ. Recent progress in biomedical sensors based on conducting polymer hydrogels.ACS Appl. Bio Mater.2023651720174110.1021/acsabm.3c0013937115912
    [Google Scholar]
  7. DasA. RinguT. GhoshS. PramanikN. A comprehensive review on recent advances in preparation, physicochemical characterization, and bioengineering applications of biopolymers.Polym. Bull.20238077247731210.1007/s00289‑022‑04443‑436043186
    [Google Scholar]
  8. TanZ. DiniD. Rodriguez y BaenaF. ForteA.E. ForteA.E. Composite hydrogel: A high fidelity soft tissue mimic for surgery.Mater. Des.201816088689410.1016/j.matdes.2018.10.018
    [Google Scholar]
  9. KesharwaniP. BishtA. AlexanderA. DaveV. SharmaS. Biomedical applications of hydrogels in drug delivery system: An update.J. Drug Deliv. Sci. Technol.20216610291410.1016/j.jddst.2021.102914
    [Google Scholar]
  10. NafoW. Al-MayahA. Mechanical characterization of PVA hydrogels’ rate-dependent response using multi-axial loading.PLoS One2020155e023302110.1371/journal.pone.023302132396571
    [Google Scholar]
  11. NafoW. Al-MayahA. Characterization of PVA hydrogels’ hyperelastic properties by uniaxial tension and cavity expansion tests.Int. J. Non-linear Mech.202012410351510.1016/j.ijnonlinmec.2020.103515
    [Google Scholar]
  12. NafoW. Al-MayahA. Measuring the hyperelastic response of porcine liver tissues In-vitro using controlled cavitation rheology.Exp. Mech.202161244545810.1007/s11340‑020‑00674‑6
    [Google Scholar]
  13. HoffmanA.S. Hydrogels for biomedical applications.Adv. Drug Deliv. Rev.201264182310.1016/j.addr.2012.09.01011755703
    [Google Scholar]
  14. CalóE. KhutoryanskiyV.V. Biomedical applications of hydrogels: A review of patents and commercial products.Eur. Polym. J.20156525226710.1016/j.eurpolymj.2014.11.024
    [Google Scholar]
  15. GuZ. HuangK. LuoY. Double network hydrogel for tissue engineering.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2018106e152010.1002/wnan.152029664220
    [Google Scholar]
  16. LiC. RowlandM.J. ShaoY. Responsive double network hydrogels of interpenetrating DNA and CB hostguest supramolecular systems.Adv. Mater.201527213298330410.1002/adma.20150110225899855
    [Google Scholar]
  17. SowjanyaPulasani. Komali BodduVenkata BabuC.H. Ajay. A review article on hydrogels.Int J Res Pharm Nano Sci201325548553
    [Google Scholar]
  18. ParkK ShalabyW S W ParkH Biodegradable hydrogels for drug delivery.Lancaster2001115984
    [Google Scholar]
  19. Prud’hommeR.A. HarlandR.A. Polyelectrolyte gels: Properties, preparation, and applications.Washington, DCAmerican chemical society1993425426
    [Google Scholar]
  20. IreshaH. KobayashiT. Smart polysaccharide hydrogels in drug delivery and release.Advanced Biopolymeric Systems for Drug Delivery.Berlin/Heidelberg, GermanySpringer202013514910.1007/978‑3‑030‑46923‑8_6
    [Google Scholar]
  21. HuY. ZhangZ. LiY. Dual‐crosslinked amorphous polysaccharide hydrogels based on chitosan/alginate for wound healing applications.Macromol. Rapid Commun.20183920180006910.1002/marc.20180006929855096
    [Google Scholar]
  22. KwiecieńI. KwiecieńM. Application of polysaccharide-based hydrogels as probiotic delivery systems.Gels2018424710.3390/gels402004730674823
    [Google Scholar]
  23. SohailM Mudassir  MinhasMU Natural and synthetic polymer-based smart biomaterials for management of ulcerative colitis: A review of recent developments and future prospects.Drug Deliv. Transl. Res.20199259561410.1007/s13346‑018‑0512‑x29611113
    [Google Scholar]
  24. BashirS. TeoY.Y. RameshS. RameshK. Synthesis, characterization, properties of N-succinyl chitosan-g-poly (methacrylic acid) hydrogels and in vitro release of theophylline.Polymer201692364910.1016/j.polymer.2016.03.045
    [Google Scholar]
  25. ChenS.C. WuY.C. MiF.L. LinY.H. YuL.C. SungH.W. A novel pH-sensitive hydrogel composed of N,O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery.J. Control. Release200496228530010.1016/j.jconrel.2004.02.00215081219
    [Google Scholar]
  26. ChenS. LiuM. JinS. ChenY. Synthesis and swelling properties of pH‐sensitive hydrogels based on chitosan and poly(methacrylic acid) semi‐interpenetrating polymer network.J. Appl. Polym. Sci.20059841720172610.1002/app.22348
    [Google Scholar]
  27. Sudhir DhoteN. Dineshbhai PatelR. KuwarU. Application of thermoresponsive smart polymers based in situ gel as a novel carrier for tumor targeting.Curr. Cancer Drug Targets202424122
    [Google Scholar]
  28. AgnihotriS. AminabhaviT. Novel interpenetrating network chitosan-poly(ethylene oxide-g-acrylamide) hydrogel microspheres for the controlled release of capecitabine.Int. J. Pharm.2006324210311510.1016/j.ijpharm.2006.05.06116824710
    [Google Scholar]
  29. PatelR. KuwarU. DhoteN. Natural polymers as a carrier for the effective delivery of antineoplastic drugs.Curr. Drug Deliv.202421219321010.2174/156720182066623011217003536644864
    [Google Scholar]
  30. EhteramiA. SalehiM. FarzamfarS. Chitosan/alginate hydrogels containing Alpha-tocopherol for wound healing in rat model.J. Drug Deliv. Sci. Technol.20195120421310.1016/j.jddst.2019.02.032
    [Google Scholar]
  31. BhairamM. PrasadJ. VermaK. JainP. GidwaniB. Formulation of transdermal patch of Losartan Potassium & Glipizide for the treatment of hypertension & diabetes.Mater. Today Proc.202383596810.1016/j.matpr.2023.01.147
    [Google Scholar]
  32. PujanaM.A. Pérez-ÁlvarezL. IturbeL.C.C. KatimeI. Biodegradable chitosan nanogels crosslinked with genipin.Carbohydr. Polym.20139483684210.1016/j.carbpol.2013.01.08223544640
    [Google Scholar]
  33. PelláM.C.G. Lima-TenórioM.K. Tenório-NetoE.T. GuilhermeM.R. MunizE.C. RubiraA.F. Chitosan-based hydrogels: From preparation to biomedical applications.Carbohydr. Polym.201819623324510.1016/j.carbpol.2018.05.03329891292
    [Google Scholar]
  34. PeppasN.A. HiltJ.Z. KhademhosseiniA. LangerR. Hydrogels in biology and medicine: From molecular principles to bionanotechnology.Adv. Mater.200618111345136010.1002/adma.200501612
    [Google Scholar]
  35. BaghaieS. KhorasaniM.T. ZarrabiA. MoshtaghianJ. Wound healing properties of PVA/starch/chitosan hydrogel membranes with nano Zinc oxide as antibacterial wound dressing material.J. Biomater. Sci. Polym. Ed.201728182220224110.1080/09205063.2017.139038328988526
    [Google Scholar]
  36. MohamedR.R. ElellaM.H.A. SabaaM.W. Cytotoxicity and metal ions removal using antibacterial biodegradable hydrogels based on N -quaternized chitosan/poly(acrylic acid).Int. J. Biol. Macromol.20179830231310.1016/j.ijbiomac.2017.01.10728130135
    [Google Scholar]
  37. EhteramiA. SalehiM. FarzamfarS. A promising wound dressing based on alginate hydrogels containing vitamin D3 cross-linked by calcium carbonate/d-glucono-δ-lactone.Biomed. Eng. Lett.202010230931910.1007/s13534‑020‑00155‑832431957
    [Google Scholar]
  38. Jahanban-EsfahlanR. DerakhshankhahH. HaghshenasB. MassoumiB. AbbasianM. JaymandM. A bio-inspired magnetic natural hydrogel containing gelatin and alginate as a drug delivery system for cancer chemotherapy.Int. J. Biol. Macromol.202015643844510.1016/j.ijbiomac.2020.04.07432298719
    [Google Scholar]
  39. JainA. JainP. SoniP. TiwariA. TiwariS.P. Design and characterization of silver nanoparticles of different species of curcuma in the treatment of cancer using human colon cancer cell line (HT-29).J. Gastrointest. Cancer2023541909510.1007/s12029‑021‑00788‑735043370
    [Google Scholar]
  40. FarokhiM. Jonidi ShariatzadehF. SoloukA. MirzadehH. Alginate based scaffolds for cartilage tissue engineering: A review.Int. J. Polym. Mater.2019118
    [Google Scholar]
  41. KimI.S. OhI.J. Drug release from the enzyme-degradable and pH-sensitive hydrogel composed of glycidyl methacrylate dextran and poly(acrylic acid).Arch. Pharm. Res.200528898398710.1007/BF0297388716178427
    [Google Scholar]
  42. LeeA.L.S. OrdeñezG. ChakrabortyS. Novel glycerol cross-linked poly (acrylic acid) hydrogel for encapsulation and release of benzocaine.Philipp. Sci. Lett.201148187
    [Google Scholar]
  43. Mohd AminM.C.I. AhmadN. HalibN. AhmadI. Synthesis and characterization of thermo- and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery.Carbohydr. Polym.201288246547310.1016/j.carbpol.2011.12.022
    [Google Scholar]
  44. NhoY.C. ParkJ.S. LimY.M. Preparation of poly (acrylic acid) hydrogel by radiation crosslinking and its application for mucoadhesives.Polymers20146389089810.3390/polym6030890
    [Google Scholar]
  45. KhizarS. AlrushaidN. Alam KhanF. Nanocarriers based novel and effective drug delivery system.Int. J. Pharm.202363212257010.1016/j.ijpharm.2022.12257036587775
    [Google Scholar]
  46. YangZ. HanB. FuD. LiuW. Acute toxicity of high dosage carboxymethyl chitosan and its effect on the blood parameters in rats.J. Mater. Sci. Mater. Med.201223245746210.1007/s10856‑011‑4467‑422042463
    [Google Scholar]
  47. ZhangL. ZhouJ. HuL. In situ formed fibrin scaffold with cyclophosphamide to synergize with immune checkpoint blockade for inhibition of cancer recurrence after surgery.Adv. Funct. Mater.2020307190692210.1002/adfm.201906922
    [Google Scholar]
  48. LiuM. CaoZ. ZhangR. ChenY. YangX. Injectable supramolecular hydrogel for locoregional immune checkpoint blockade and enhanced cancer chemo-immunotherapy.ACS Appl. Mater. Interfaces20211329338743388410.1021/acsami.1c0828534275267
    [Google Scholar]
  49. LinC.C. MettersA.T. Hydrogels in controlled release formulations: Network design and mathematical modeling.Adv. Drug Deliv. Rev.20065812-131379140810.1016/j.addr.2006.09.00417081649
    [Google Scholar]
  50. AmsdenB. Solute diffusion within hydrogels. Mechanisms and models.Macromolecules199831238382839510.1021/ma980765f
    [Google Scholar]
  51. PeppasN. BuresP. LeobandungW. IchikawaH. Hydrogels in pharmaceutical formulations.Eur. J. Pharm. Biopharm.2000501274610.1016/S0939‑6411(00)00090‑410840191
    [Google Scholar]
  52. LinC.C. AnsethK.S. PEG hydrogels for the controlled release of biomolecules in regenerative medicine.Pharm. Res.200926363164310.1007/s11095‑008‑9801‑219089601
    [Google Scholar]
  53. BettiniR. ColomboP. MassimoG. CatellaniP.L. VitaliT. Swelling and drug release in hydrogel matrices: Polymer viscosity and matrix porosity effects.Eur. J. Pharm. Sci.19942321321910.1016/0928‑0987(94)90025‑6
    [Google Scholar]
  54. SiepmannJ. PeppasN.A. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC).Adv. Drug Deliv. Rev.20126416317410.1016/j.addr.2012.09.02811369079
    [Google Scholar]
  55. RavaineV. AnclaC. CatargiB. Chemically controlled closed-loop insulin delivery.J. Control. Release2008132121110.1016/j.jconrel.2008.08.00918782593
    [Google Scholar]
  56. JudefeindA. De VilliersM.M. Drug loading into and in vitro release from nanosized drug delivery systems.Nanotechnology in Drug Delivery. de VilliersM.M. AramwitP. KwonG.S. New York, NYSpringer200912916210.1007/978‑0‑387‑77668‑2_5
    [Google Scholar]
  57. QiangL. CaiZ. JiangW. A novel macrophage-mediated biomimetic delivery system with NIR-triggered release for prostate cancer therapy.J. Nanobiotechnology20191718310.1186/s12951‑019‑0513‑z31291948
    [Google Scholar]
  58. LopesE. PohlmannA.R. BassaniV. GuterresS.S. Polymeric colloidal systems containing ethionamide: preparation and physico-chemical characterization.Pharmazie200055752753010944782
    [Google Scholar]
  59. PanyamJ. WilliamsD. DashA. Leslie-PeleckyD. LabhasetwarV. Solid-state solubility influences encapsulation and release of hydrophobic drugs from PLGA/PLA nanoparticles.J. Pharm. Sci.20049371804181410.1002/jps.2009415176068
    [Google Scholar]
  60. GovenderT. RileyT. EhtezaziT. Defining the drug incorporation properties of PLA–PEG nanoparticles.Int. J. Pharm.200019919511010.1016/S0378‑5173(00)00375‑610794931
    [Google Scholar]
  61. GovenderT. StolnikS. GarnettM.C. IllumL. DavisS.S. PLGA nanoparticles prepared by nanoprecipitation: Drug loading and release studies of a water soluble drug.J. Control. Release199957217118510.1016/S0168‑3659(98)00116‑39971898
    [Google Scholar]
  62. FuX. PingQ. GaoY. Effects of formulation factors on encapsulation efficiency and release behaviour in vitro of huperzine A-PLGA microspheres.J. Microencapsul.200522770571410.1080/0265204050016219616421082
    [Google Scholar]
  63. MehtaR.C. ThanooB.C. DelucaP.P. Peptide containing microspheres from low molecular weight and hydrophilic poly(d,l-lactide-co-glycolide).J. Control. Release199641324925710.1016/0168‑3659(96)01332‑6
    [Google Scholar]
  64. TorchilinV. Tumor delivery of macromolecular drugs based on the EPR effect.Adv. Drug Deliv. Rev.20116313113510.1016/j.addr.2010.03.011
    [Google Scholar]
  65. DewanM. DuttaK. RanaD. Effect of tamarind seed polysaccharide on thermogelation property and drug release profile of poloxamer 407-based ophthalmic formulation.New J. Chem.20204436157081571510.1039/D0NJ02767G
    [Google Scholar]
  66. AttiaM.F. AntonN. WallynJ. OmranZ. VandammeT.F. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites.J. Pharm. Pharmacol.20197181185119810.1111/jphp.1309831049986
    [Google Scholar]
  67. DasB. ChattopadhyayD. RanaD. The gamut of perspectives, challenges, and recent trends for in situ hydrogels: A smart ophthalmic drug delivery vehicle.Biomater. Sci.20208174665469110.1039/D0BM00532K32760957
    [Google Scholar]
  68. GonçalvesC. PereiraP. GamaM. Self-assembled hydrogel nanoparticles for drug delivery applications.Materials2010321420146010.3390/ma3021420
    [Google Scholar]
  69. SarkarG. OrasughJ.T. SahaN.R. RoyI. BhattacharyyaA. ChattopadhyayA.K. Cellulose nanofibrils/chitosan based transdermal drug delivery vehicle for controlled release of ketorolac tromethamine.New J. Chem.201741241531215319
    [Google Scholar]
  70. MittalG. SahanaD.K. BhardwajV. Ravi KumarM.N.V. Estradiol loaded PLGA nanoparticles for oral administration: Effect of polymer molecular weight and copolymer composition on release behavior in vitro and in vivo.J. Control. Release20071191778510.1016/j.jconrel.2007.01.01617349712
    [Google Scholar]
  71. PolakovičM. GörnerT. GrefR. DellacherieE. Lidocaine loaded biodegradable nanospheres.J. Control. Release1999602-316917710.1016/S0168‑3659(99)00012‑710425323
    [Google Scholar]
  72. BudhianA. SiegelS.J. WineyK.I. Controlling the in vitro release profiles for a system of haloperidol-loaded PLGA nanoparticles.Int. J. Pharm.20083461-215115910.1016/j.ijpharm.2007.06.01117681683
    [Google Scholar]
  73. TorchilinV.P. Immobilized Enzymes in Medicine.Berlin, HeidelbergSpringer199110.1007/978‑3‑642‑75821‑8
    [Google Scholar]
  74. TorchilinV.P. Delivery of Protein and Peptide Drugs in Cancer Imperial College.London, Hackensack, NJDistributed by World Scientific Pub200610.1142/p429
    [Google Scholar]
  75. SantiniJ.T.Jr CimaM.J. LangerR. A controlled-release microchip.Nature1999397671733533810.1038/168989988626
    [Google Scholar]
  76. LaVanD.A. LynnD.M. LangerR. Moving smaller in drug discovery and delivery.Nat. Rev. Drug Discov.200211778410.1038/nrd70712119612
    [Google Scholar]
  77. ShimizuT. KishidaT. HasegawaU. Nanogel DDS enables sustained release of IL-12 for tumor immunotherapy.Biochem. Biophys. Res. Commun.2008367330335
    [Google Scholar]
  78. DanafarH. SharafiA. Kheiri ManjiliH. AndalibS. Sulforaphane delivery using mPEG–PCL co-polymer nanoparticles to breast cancer cells.Pharm. Dev. Technol.201722564265110.3109/10837450.2016.114629626916923
    [Google Scholar]
  79. ZeppF. Principles of vaccine design—Lessons from nature.Vaccine201028C14C24
    [Google Scholar]
  80. MužíkováG. LagaR. Macromolecular systems for vaccine delivery.Physiol. Res.201665Suppl. 2S203S21610.33549/physiolres.93342227762586
    [Google Scholar]
  81. AzadN. RojanasakulY. Vaccine delivery--current trends and future.Curr. Drug Deliv.20063213714610.2174/15672010677635924916611000
    [Google Scholar]
  82. HerzogC. Influence of parenteral administration routes and additional factors on vaccine safety and immunogenicity: a review of recent literature.Expert Rev. Vaccines201413339941510.1586/14760584.2014.88328524512188
    [Google Scholar]
  83. BasuP. SahaN. SahaT. SahaP. Polymeric hydrogel-based systems for vaccine delivery: A review.Polymer202123012408810.1016/j.polymer.2021.124088
    [Google Scholar]
  84. ZhangM. HongY. ChenW. WangC. Polymers for DNA vaccine delivery.ACS Biomater. Sci. Eng.20173210812510.1021/acsbiomaterials.6b0041833450790
    [Google Scholar]
  85. ZhangY. LiuJ. SuZ. Utilizing blast furnace slags (BFS) to prepare high-temperature composite phase change materials (C-PCMs).Constr. Build. Mater.201817718419110.1016/j.conbuildmat.2018.05.110
    [Google Scholar]
  86. WuY. WeiW. ZhouM. Thermal-sensitive hydrogel as adjuvantfree vaccine delivery system for H5N1 intranasal immunization.Biomaterials20123323512360
    [Google Scholar]
  87. WuY. WuS. HouL. Novel thermal-sensitive hydrogel enhances both humoral and cell-mediated immune responses by intranasal vaccine delivery.Eur. J. Pharm. Biopharm.201281348649710.1016/j.ejpb.2012.03.02122507968
    [Google Scholar]
  88. DíazA.G. QuinterosD.A. GutiérrezS.E. Immune response induced by conjunctival immunization with polymeric antigen BLSOmp31 using a thermoresponsive and mucoadhesive in situ gel as vaccine delivery system for prevention of ovine brucellosis.Vet. Immunol. Immunopathol.2016178505610.1016/j.vetimm.2016.07.00427496742
    [Google Scholar]
  89. ChongS-F. SextonA. De RoseR. A paradigm for peptide vaccine delivery using viral epitopes encapsulated in degradable polymer hydrogel capsules.Biomaterials2009305178518610.1016/j.biomaterials.2009.05.078
    [Google Scholar]
  90. ChristieR. FindleyD. DunfeeM. Photopolymerized hydrogel carriers for live vaccine ballistic delivery.Vaccine2006241462146910.1016/j.vaccine.2005.05.048
    [Google Scholar]
  91. HuangH. ShiJ. LaskinJ. Design of a shear-thinning recoverable peptide hydrogel from native sequences and application for influenza H1N1 vaccine adjuvant.Soft Matter20117890510.1039/c1sm05157a
    [Google Scholar]
  92. WuQ.J. ZhuX.C. XiaoX. A novel vaccine delivery system: Biodegradable nanoparticles in thermosensitive hydrogel.Growth Factors201129629029710.3109/08977194.2011.62451721981422
    [Google Scholar]
  93. SongH. YangP. HuangP. ZhangC. KongD. WangW. Injectable polypeptide hydrogel-based co-delivery of vaccine and immune checkpoint inhibitors improves tumor immunotherapy.Theranostics2019982299231410.7150/thno.3057731149045
    [Google Scholar]
  94. FriedrichB.M. BeasleyD.W.C. RudraJ.S. Supramolecular peptide hydrogel adjuvanted subunit vaccine elicits protective antibody responses against west nile virus.Vaccine2016345479548210.1016/j.vaccine.2016.09.044
    [Google Scholar]
  95. LiX. Galliher-BeckleyA. HuangH. SunX. ShiJ. Peptide nanofiber hydrogel adjuvanted live virus vaccine enhances cross-protective immunity to porcine reproductive and respiratory syndrome virus.Vaccine201331414508451510.1016/j.vaccine.2013.07.08023933333
    [Google Scholar]
  96. BenoitM.A. BarasB. GillardJ. Preparation and characterization of protein-loaded poly(ε-caprolactone) microparticles for oral vaccine delivery.Int. J. Pharm.19991841738410.1016/S0378‑5173(99)00109‑X10425353
    [Google Scholar]
  97. TiwariS. GoyalA.K. MishraN. Development and characterization of novel carrier gel core liposomesbased transmission blocking malaria vaccine.J. Control. Release2009140157165
    [Google Scholar]
  98. MatsuoK. IshiiY. QuanY.S. Transcutaneous vaccination using a hydrogel patch induces effective immune responses to tetanus and diphtheria toxoid in hairless rat.J. Control. Release20111491152010.1016/j.jconrel.2010.05.01220493218
    [Google Scholar]
  99. HirobeS. MatsuoK. QuanY-S. Clinical study of transcutaneous vaccination using a hydrogel patch for tetanus and diphtheria.Vaccine2012301847185410.1016/j.vaccine.2011.12.130
    [Google Scholar]
  100. DingZ. VerbaanF.J. Bivas BenitaM. Microneedle arrays for the transcutaneous immunization of diphtheria and influenza in BALB/c mice.J. Control. Release20091317678
    [Google Scholar]
  101. MiksztaJ.A. AlarconJ.B. BrittinghamJ.M. SutterD.E. PettisR.J. HarveyN.G. Improved genetic immunization via micromechanical disruption of skin-barrier function and targeted epidermal delivery.Nat. Med.20028441541910.1038/nm0402‑41511927950
    [Google Scholar]
  102. SchulzeJ. HendrikxS. Schulz-SiegmundM. AignerA. Microparticulate poly(vinyl alcohol) hydrogel formulations for embedding and controlled release of polyethylenimine (PEI)-based nanoparticles.Acta Biomater.20164521022210.1016/j.actbio.2016.08.05627592816
    [Google Scholar]
  103. LiuY. VranaN.E. CahillP.A. McGuinnessG.B. Physically crosslinked composite hydrogels of PVA with natural macromolecules: Structure, mechanical properties, and endothelial cell compatibility.J. Biomed. Mater. Res. B Appl. Biomater.200990B249250210.1002/jbm.b.3131019145629
    [Google Scholar]
  104. YeX. LiX. ShenY. ChangG. YangJ. GuZ. Self-healing pH-sensitive cytosine- and guanosine-modified hyaluronic acid hydrogels via hydrogen bonding.Polymer201710834836010.1016/j.polymer.2016.11.063
    [Google Scholar]
  105. FengW. ZhouW. DaiZ. YasinA. YangH. Tough polypseudorotaxane supramolecular hydrogels with dual-responsive shape memory properties.J. Mater. Chem. B Mater. Biol. Med.20164111924193110.1039/C5TB02737C32263069
    [Google Scholar]
  106. MasruchinN. ParkB.D. CausinV. Influence of sonication treatment on supramolecular cellulose microfibril-based hydrogels induced by ionic interaction.J. Ind. Eng. Chem.20152926527210.1016/j.jiec.2015.03.034
    [Google Scholar]
  107. Ishii-MizunoY. UmekiY. OnukiY. Improved sustained release of antigen from immunostimulatory DNA hydrogel by electrostatic interaction with chitosan.Int. J. Pharm.20175161-239240010.1016/j.ijpharm.2016.11.04827884715
    [Google Scholar]
  108. YuY. MoncalK.K. LiJ. Three-dimensional bioprinting using self-assembling scalable scaffold-free “tissue strands” as a new bioink.Sci. Rep.2016612871410.1038/srep2871427346373
    [Google Scholar]
  109. HenninkW.E. De JongS.J. BosG.W. VeldhuisT.F.J. van NostrumC.F. Biodegradable dextran hydrogels crosslinked by stereocomplex formation for the controlled release of pharmaceutical proteins.Int. J. Pharm.20042771-29910410.1016/j.ijpharm.2003.02.00215158973
    [Google Scholar]
  110. JongSJ De SmedtSC DemeesterJ NostrumCF Biodegradable hydrogels based on stereocomplex formation between lactic acid oligomers grafted to dextran.J Contr Release2001724756
    [Google Scholar]
  111. WangR. BothS.K. GevenM. Kinetically stable metal ligand charge transfer complexes as crosslinks in nanogels/hydrogels: Physical properties and cytotoxicity.Acta Biomater.20152613614410.1016/j.actbio.2015.08.01926292264
    [Google Scholar]
  112. EssawyH.A. GhazyM.B.M. El-HaiF.A. MohamedM.F. Superabsorbent hydrogels via graft polymerization of acrylic acid from chitosan-cellulose hybrid and their potential in controlled release of soil nutrients.Int. J. Biol. Macromol.20168914415110.1016/j.ijbiomac.2016.04.07127126169
    [Google Scholar]
  113. AnY.M. LiuT. TianR. Synthesis of novel temperature responsive PEG-b-[PCL-g-P(MEO2MA-co-OEGMA)]-b-PEG (tBG) triblock-graft copolymers and preparation of tBG/graphene oxide composite hydrogels via click chemistry.React. Funct. Polym.2015941810.1016/j.reactfunctpolym.2015.05.011
    [Google Scholar]
  114. KobeR YoshitaniK TeramotoY Fabrication of elastic composite hydrogels using surface‐modified cellulose nanofiber as a multifunctional crosslinker.J Appl Polym Sci20161334app.4290610.1002/app.42906
    [Google Scholar]
  115. WeiQ. XuM. LiaoC. Printable hybrid hydrogel by dual enzymatic polymerization with superactivity.Chem. Sci.2016742748275210.1039/C5SC02234G28660051
    [Google Scholar]
  116. Sadat EbrahimiM.M. VossY. SchönherrH. Rapid detection of Escherichia coli via enzymatically triggered reactions in self-reporting chitosan hydrogels.ACS Appl. Mater. Interfaces2015736201902019910.1021/acsami.5b0574626322857
    [Google Scholar]
  117. ChaykarA.S. GoharpeyF. YeganehJ.K. Volume phase transition of electron beam cross-linked thermo-responsive PVME nanogels in the presence and absence of nanoparticles: With a view toward rheology and interactions.RSC Advances20166129693970810.1039/C5RA21021F
    [Google Scholar]
  118. TranT.H. OkabeH. HidakaY. HaraK. Removal of metal ions from aqueous solutions using carboxymethyl cellulose/sodium styrene sulfonate gels prepared by radiation grafting.Carbohydr. Polym.201715733534310.1016/j.carbpol.2016.09.04927987936
    [Google Scholar]
  119. VaraprasadK SadikuR Development of microbial protective K olliphor‐based nanocomposite hydrogels.J Appl Polym Sci201513246app.4278110.1002/app.42781
    [Google Scholar]
  120. WangJ. WeiJ. Hydrogel brushes grafted from stainless steel via surface-initiated atom transfer radical polymerization for marine antifouling.Appl. Surf. Sci.201638220221610.1016/j.apsusc.2016.03.223
    [Google Scholar]
  121. HoffmanA.S. Hydrogels for biomedical applications.Advanced Drug Delivery Reviews.20121823
    [Google Scholar]
  122. Bharskar,Ganesh R. A review on hydrogel.J. Pharm. Pharm. Sci.2020912881298
    [Google Scholar]
  123. ChaiQ. JiaoY. YuX. Hydrogels for biomedical applications: Their characteristics and the mechanisms behind them.Gels2017316
    [Google Scholar]
  124. KeW. YutingH. YingnaW. Functional hydrogels and their application in drug delivery, biosensors, and tissue engineering.Int. J. Polym. Sci.2019114
    [Google Scholar]
  125. BahramM. MohseniN. MoghtaderM. An introduction to hydrogels and some recent applications.In: An Introduction to Hydrogels and Some Recent Applications.InTech2016
    [Google Scholar]
  126. MajcherM.J. HoareT. Hydrogel properties and characterization techniques.Functional Biopolymers. Polymers and Polymeric Composites: A Reference Series.Springer, Cham2013
    [Google Scholar]
  127. XiaopingS. JuliaL.S. PaulaB. Hydrogels based on cellulose and chitin: Fabrication, properties, and applications.Green Chem.20161853
    [Google Scholar]
  128. PuranikA.S. PaoL.P. WhiteV.M. PeppasN.A. Synthesis and characterization of pH-responsive nanoscale hydrogels for oral delivery of hydrophobic therapeutics.Eur. J. Pharm. Biopharm.201610819621310.1016/j.ejpb.2016.09.00727634646
    [Google Scholar]
  129. KunjiappanS TheivendranP BaskararajS Modeling a pH-sensitive Zein-co-acrylic acid hybrid hydrogels loaded 5-fluorouracil and rutin for enhanced anticancer efficacy by oral delivery.3 Biotech201995185
    [Google Scholar]
  130. BastiancichC. BiancoJ. VanvarenbergK. Injectable nanomedicine hydrogel for local chemotherapy of glioblastoma after surgical resection.J. Control. Release2017264455410.1016/j.jconrel.2017.08.01928830791
    [Google Scholar]
  131. YangW.J. ZhouP. LiangL. Nanogel-incorporated injectable hydrogel for synergistic therapy based on sequential local delivery of combretastatin-A4 phosphate (CA4P) and doxorubicin (DOX).ACS Appl. Mater. Interfaces20181022185601857310.1021/acsami.8b0439429767951
    [Google Scholar]
  132. ChaoY. ChenQ. LiuZ. Smart injectable hydrogels for cancer immunotherapy.Adv. Funct. Mater.2020302190278510.1002/adfm.201902785
    [Google Scholar]
  133. SorannoD.E. LuH.D. WeberH.M. RaiR. BurdickJ.A. Immunotherapy with injectable hydrogels to treat obstructive nephropathy.J. Biomed. Mater. Res. A201410272173218010.1002/jbm.a.3490223913854
    [Google Scholar]
  134. JiangL. DingY. XueX. Entrapping multifunctional dendritic nanoparticles into a hydrogel for local therapeutic delivery and synergetic immunochemotherapy.Nano Res.201811116062607310.1007/s12274‑018‑2123‑8
    [Google Scholar]
  135. RodellC.B. RaiR. FaubelS. BurdickJ.A. SorannoD.E. Local immunotherapy via delivery of interleukin-10 and transforming growth factor β antagonist for treatment of chronic kidney disease.J. Control. Release201520613113910.1016/j.jconrel.2015.03.02525804871
    [Google Scholar]
  136. MaH. HeC. ChenX. Injectable hydrogels as local depots at tumor sites for antitumor immunotherapy and immune-based combination therapy.Macromol. Biosci.2021216210003910.1002/mabi.20210003933818918
    [Google Scholar]
  137. LiJ. MooneyD.J. Designing hydrogels for controlled drug delivery.Nat. Rev. Mater.20161121607110.1038/natrevmats.2016.7129657852
    [Google Scholar]
  138. AhmedA. TaitS.W.G. Targeting immunogenic cell death in cancer.Mol. Oncol.202014122994300610.1002/1878‑0261.1285133179413
    [Google Scholar]
  139. GalluzziL. VitaleI. WarrenS. Consensus guidelines for the definition, detection and interpretation of immunogenic cell death.J. Immunother. Cancer202081e00033710.1136/jitc‑2019‑00033732209603
    [Google Scholar]
  140. ZhuM. YangM. ZhangJ. Immunogenic cell death induction by ionizing radiation.Front. Immunol.20211270536110.3389/fimmu.2021.70536134489957
    [Google Scholar]
  141. GuanX. SunL. ShenY. Nanoparticle-enhanced radiotherapy synergizes with PD-L1 blockade to limit post-surgical cancer recurrence and metastasis.Nat. Commun.2022131283410.1038/s41467‑022‑30543‑w35595770
    [Google Scholar]
  142. DecraeneB. YangY. De SmetF. GargA.D. AgostinisP. De VleeschouwerS. Immunogenic cell death and its therapeutic or prognostic potential in high-grade glioma.Genes Immun.202223111110.1038/s41435‑021‑00161‑535046546
    [Google Scholar]
  143. KroemerG. GalluzziL. KeppO. ZitvogelL. Immunogenic cell death in cancer therapy.Annu. Rev. Immunol.2013311517210.1146/annurev‑immunol‑032712‑10000823157435
    [Google Scholar]
  144. LiZ. LaiX. FuS. Immunogenic cell death activates the tumor immune microenvironment to boost the immunotherapy efficiency.Adv. Sci.2022922220173410.1002/advs.20220173435652198
    [Google Scholar]
  145. Vanpouille-BoxC. FormentiS.C. DemariaS. Toward precision radiotherapy for use with immune checkpoint blockers.Clin. Cancer Res.201824225926510.1158/1078‑0432.CCR‑16‑003728751442
    [Google Scholar]
  146. Madan,Shikha Y, Jitender Hydrogels: A review.Int j pharm life sci20201167117
    [Google Scholar]
  147. MadhumithaG. FowsiyaJ. Emerging technology in medical applications of hydrogel.In: Hydrogels2018197218
    [Google Scholar]
  148. Moratti,Jaydee. C. StephenC. Hydrogels for biomedical application.Future Med. Chem.2011318771888
    [Google Scholar]
  149. GongC. WenweiT. XiaohuiW. Applications of hydrogels with special physical properties in biomedicine.Polymers20191191420
    [Google Scholar]
  150. SantiagoC. AbigailK.G. Hector LopezH. Translational applications of hydrogels.Chem Rev.20211211811385457
    [Google Scholar]
  151. OlakT. TuranA. AlpaslanD. DuduT.E. AktaşN. Developing poly(Agar-co-Glycerol-co-Thyme Oil) based organo-hydrogels for the controlled drug release applications.J. Drug Deliv. Sci. Technol.20206010208810.1016/j.jddst.2020.102088
    [Google Scholar]
  152. AlpaslanD. Erşen DuduT. AktasN. Development of onion oilbased organo-hydrogel for drug delivery material.J. Dispers. Sci. Technol.2021113
    [Google Scholar]
  153. AlpaslanD. Ersen DuduT. AktasN. Evaluation of poly(agarco-glycerol-co-castor oil) organo-hydrogel as a controlled release system carrier support material.Polym. Bull.202179212210.1007/s00289‑021‑03777‑9
    [Google Scholar]
  154. Ersen DuduT. AlpaslanD. AktasN. Application of poly (agar-co-glycerol-co-sweet almond oil) based organo-hydrogels as a drug delivery material.J. Polym. Environ.202230248349310.1007/s10924‑021‑02212‑434177399
    [Google Scholar]
  155. AlpaslanD. OlakT. TuranA. Ersen DuduT. AktasN. A garlic oil-based organo-hydrogel for use in pH-sensitive drug release.Chem. Zvesti202175115759577210.1007/s11696‑021‑01760‑234230754
    [Google Scholar]
  156. AlpaslanD. OlakT. TuranA. Ersen DuduT. AktasN. Use of coconut oil-based organo-hydrogels in pharmaceutical applications.J. Polym. Environ.202230266668010.1007/s10924‑021‑02219‑x
    [Google Scholar]
  157. UzanS. BarışD. ÇolakM. AydınH. HoşgörenH. Organogels as novel carriers for dermal and topical drug delivery vehicles.Tetrahedron201672477517752510.1016/j.tet.2016.10.009
    [Google Scholar]
  158. MartinB. BrouilletF. FranceschiS. PerezE. Evaluation of organogel nanoparticles as drug delivery system for lipophilic compounds.AAPS PharmSciTech20171841261126910.1208/s12249‑016‑0587‑y27480442
    [Google Scholar]
  159. QuerobinoS.M. de FariaN.C. VigatoA.A. Sodium alginate in oil-poloxamer organogels for intravaginal drug delivery: Influence on structural parameters, drug release mechanisms, cytotoxicity and in vitro antifungal activity.Mater. Sci. Eng. C2019991350136110.1016/j.msec.2019.02.03630889669
    [Google Scholar]
  160. DaiM. BaiL. ZhangH. A novel flunarizine hydrochloride-loaded organogel for intraocular drug delivery in situ: Design, physicochemical characteristics and inspection.Int. J. Pharm.202057611902710.1016/j.ijpharm.2020.11902731953090
    [Google Scholar]
  161. FardousJ. OmosoY. YoshidaK. OnoF. PatwaryM.K.A. IjimaH. Gel-in-water nanodispersion for potential application in intravenous delivery of anticancer drugs.J. Biosci. Bioeng.2022133217418010.1016/j.jbiosc.2021.10.00134789413
    [Google Scholar]
  162. LiuD.E. ChenQ. LongY.B. MaJ. GaoH. A thermo-responsive polyurethane organogel for norfloxacin delivery.Polym. Chem.20189222823510.1039/C7PY01803G
    [Google Scholar]
  163. JainA. JainP. PariharD.K. Comparative study of in-vitro antidiabetic and antibacterial activity of non-conventional Curcuma species.J Biol Act Prod Nat20199645746410.1080/22311866.2019.1710253
    [Google Scholar]
  164. RaoS.P. JainP. RathoreP. SinghV.K. Larvicidal and knockdown activity of Citrus limetta Risso oil against dengue virus vector.Indian J. Nat. Prod. Resour.201673256260
    [Google Scholar]
  165. ShuklaS.S. SharwanG. JainP. PandeyR. Toxicity and safety profiles of methanolic extract of Pistacia integerrima J. L. stewart ex brandis (pi) for wistar rats.J. Pharmacopuncture201619325325810.3831/KPI.2016.19.02727695635
    [Google Scholar]
  166. KumarV. JainP. RathoreK. AhmedZ. Biological Evaluation of Pupalia lappacea for antidiabetic, antiadipogenic, and hypolipidemic activity both in vitro and in vivo.Scientifica201620161910.1155/2016/106243026942038
    [Google Scholar]
  167. SinghP JainP PandeyR ShuklaSS Phytotherapeutic review on diabetes.Spatula DD - Peer Reviewed Journal on Complementary Medicine and Drug Discovery201654110.5455/spatula.20160414081621
    [Google Scholar]
  168. JainP. PandeyR. ShuklaS.S. Reproductive and developmental toxicity study of Talisadya churna: An ancient polyherbal formulation.IAJPR20166556415653
    [Google Scholar]
/content/journals/cms/10.2174/0126661454297401240228064500
Loading
/content/journals/cms/10.2174/0126661454297401240228064500
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): biomaterial; contact lenses; Drug delivery; hydrogel; polymers; tissue engineering
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test