Skip to content
2000
Volume 18, Issue 6
  • ISSN: 2666-1454
  • E-ISSN: 2666-1462

Abstract

The extraction of natural products is a critical area of focus in the interdisciplinary domain of applied chemistry, biology, and technology, with an emphasis on the development of eco-friendly and sustainable methodologies driven by increasing consumer demand for environmentally friendly alternatives and industry concerns about sustainable, non-toxic extraction techniques. The yield and composition of natural extracts are contingent upon the extraction method employed and the solvent selected. Emerging technologies are designed to reduce extraction time, increase extraction yield, eliminate the use of solvents, and lessen environmental impact. The pharmaceutical industry has conducted extensive research into the application of innovative extraction technologies, including green technologies. In line with the development of “green technology,” the use of green solvents for the extraction of phytochemicals, as opposed to conventional non-eco-friendly solvents, is of paramount importance. Hydrotropes are one such class of green solvents that enhance the solubility of poorly water-soluble or hydrophobic compounds in aqueous solutions by reducing toxicity, cost-effectiveness, and pH independence. These compounds have the potential to enhance the bioavailability, solubility, dissolution rate, extraction yield, and purity of extracted phytoconstituents. Their use minimizes energy consumption and costs, making them an efficient and sustainable choice in the extraction process. This review highlights the extensive use of hydrotropes in the innovative extraction of phytoactive compounds. It provides a comprehensive overview of hydrotrope chemistry, addresses toxicological concerns, and discusses state-of-the-art extraction technologies. The review also examines factors affecting the yield of phytoconstituents and explores available drug delivery systems. The potential of hydrotropes in this context is promising, paving the way for more efficient and environmentally friendly extraction methodologies.

Loading

Article metrics loading...

/content/journals/cms/10.2174/0126661454287280240102095253
2024-01-17
2025-12-07
Loading full text...

Full text loading...

References

  1. JoshiJ. NainwalN. SaharanV.A. Review on hydrotropy: A potential approach for the solubility enhancement of poorly soluble drug.Asian J. Pharm. Clin. Res.201912192610.22159/ajpcr.2019.v12i10.34811
    [Google Scholar]
  2. NidhiK. IndrajeetS. KhushbooM. GauriK. SenD.J. Hydrotropy: A promising tool for solubility enhancement: A review.Int J Drug Dev Res2011322633
    [Google Scholar]
  3. BitwellC. SenI.S. LukeC. KakomaM.K. A review of modern and conventional extraction techniques and their applications for extracting phytochemicals from plants.Scientific African2023e0158510.1016/j.sciaf.2023.e01585
    [Google Scholar]
  4. KhadkaP. RoJ. KimH. Pharmaceutical particle technologies: An approach to improve drug solubility, dissolution and bioavailability.Asian J. Pharm. Sci.201496304316
    [Google Scholar]
  5. EastoeJ. HatzopoulosM.H. DowdingP.J. Action of hydrotropes and alkyl-hydrotropes.Soft Matter20117135917592510.1039/c1sm05138e
    [Google Scholar]
  6. CuiY. Hydrotropic solubilization by urea derivatives: A molecular dynamics simulation studyJ Pharm20072013
    [Google Scholar]
  7. HodgdonT.K. KalerE.W. Hydrotropic solutions.Curr. Opin. Colloid Interface Sci.2007123121128
    [Google Scholar]
  8. HeldtN. ZhaoJ. FribergS. ZhangZ. SlackG. LiY. Controlling the size of vesicles prepared from egg lecithin using a hydrotrope.Tetrahedron200056366985699010.1016/S0040‑4020(00)00520‑2
    [Google Scholar]
  9. DhapteV. MehtaP. Advances in hydrotropic solutions: An updated review. St. Petersburg Polytechnical University Journal.Physics and Mathematics201514424435
    [Google Scholar]
  10. TripathiD. ChaudharyN. WalP. RaiA.K. SahooJ. Green hydrotropes-assisted route: An alternative approach for extracting phytoconstituents and associated drug delivery systems.Drug Deliv. Lett.202111322023210.2174/2210303111666210712100722
    [Google Scholar]
  11. LeeS.C. HuhK.M. LeeJ. ChoY.W. GalinskyR.E. ParkK. Hydrotropic polymeric micelles for enhanced paclitaxel solubility: In vitro and in vivo characterization.Biomacromolecules20078120220810.1021/bm060307b 17206808
    [Google Scholar]
  12. PawarK. DesaiM.A. ParikhJ. Minimum hydrotrope concentration behavior of aqueous solution of sodium salicylate in presence of additives.J. Dispers. Sci. Technol.201233121746175110.1080/01932691.2011.629532
    [Google Scholar]
  13. KumarS. SinghP. Various techniques for solubility enhancement: An overview.Pharma Innov.201651, Part A23
    [Google Scholar]
  14. RanjhaM.M.A.N. IrfanS. LorenzoJ.M. Sonication, a potential technique for extraction of phytoconstituents: A systematic review.Processes202198140610.3390/pr9081406
    [Google Scholar]
  15. MadanJ. PawarK. DuaK. Solubility enhancement studies on lurasidone hydrochloride using mixed hydrotropy.Int. J. Pharm. Investig.20155211412010.4103/2230‑973X.153390 25838997
    [Google Scholar]
  16. DongreP.P. KannurD.M. KosambiyaV. DesaiB.D. Significant role of hydrotropes in extraction of phytoconstituents-a review.Int. J. Pharm. Sci. Res.201124730
    [Google Scholar]
  17. GaikarV.G. SharmaM.M. Note: extractive separations with hydrotropes.Solvent Extr. Ion Exch.19864483984610.1080/07366298608917896
    [Google Scholar]
  18. Horváth-SzabóG. YinQ. FribergS.E. The hydrotrope action of sodium xylenesulfonate on the solubility of lecithin.J. Colloid Interface Sci.20012361525910.1006/jcis.2000.7391 11254328
    [Google Scholar]
  19. PrakashD.G. KumarS.T. GandhiN.N. Effect of Hydrotrope on solubility and mass transfer coefficient of p-nitro benzoic acid.J Appl Sci20099162975298010.3923/jas.2009.2975.2980
    [Google Scholar]
  20. GhuleS.N. DesaiM.A. Intensified extraction of valuable compounds from clove buds using ultrasound assisted hydrotropic extraction.J. Appl. Res. Med. Aromat. Plants20212510032510.1016/j.jarmap.2021.100325
    [Google Scholar]
  21. SharmaR.A. GaikarV.G. Hydrotropic extraction of reserpine from rauwolfia vomitoria roots.Sep. Sci. Technol.201247682783310.1080/01496395.2011.635623
    [Google Scholar]
  22. PrakashD.G. PanneerselvamP. MadhusudananS. AdityaV. Hydrotropic extraction of xanthones from mangosteen pericarp.Adv. Mat. Res.2014984-98537237610.4028/www.scientific.net/AMR.984‑985.372
    [Google Scholar]
  23. FribergS.E. Hydrotropes.Curr. Opin. Colloid Interface Sci.19972549049410.1016/S1359‑0294(97)80096‑9
    [Google Scholar]
  24. FierascuR.C. FierascuI. OrtanA. GeorgievM.I. SieniawskaE. Innovative approaches for recovery of phytoconstituents from medicinal/aromatic plants and biotechnological production.Molecules202025230910.3390/molecules25020309 31940923
    [Google Scholar]
  25. Hopkins HatzopoulosM. EastoeJ. DowdingP.J. RogersS.E. HeenanR. DyerR. Are hydrotropes distinct from surfactants?Langmuir20112720123461235310.1021/la2025846 21870872
    [Google Scholar]
  26. RaoP RathodV. Phytochemicals: An insight to modern extraction technologies and their applicationsIngredients extraction by physicochemical methods in food201749552110.1016/B978‑0‑12‑811521‑3.00013‑2
    [Google Scholar]
  27. TripathiD. ChaudharyN. SharmaD.K. SahooJ. Insightful investigative account on hydrotropic solubilization practice utilized for solubility management of poorly dissolvable drugs.Curr. Drug Ther.202116539340810.2174/1574885516666210914105024
    [Google Scholar]
  28. HartatiI. KurniasariL. AnasY. AniqN. The application of hydrotropes as medium in the extraction of andrographolide.Indones. J. Pharm.201425426510.14499/indonesianjpharm25iss4pp265
    [Google Scholar]
  29. HartatiI. KurniasariL. AnasY. The application of response surface methodology in hydrotropic microwave assisted extraction of andrographolide.Am J Oil Chem Technol20131101626
    [Google Scholar]
  30. RamanG. GaikarV.G. Microwave-assisted extraction of piperine from Piper nigrum.Ind. Eng. Chem. Res.200241102521252810.1021/ie010359b
    [Google Scholar]
  31. DevendraL.P. Kiran KumarM. PandeyA. Evaluation of hydrotropic pretreatment on lignocellulosic biomass.Bioresour. Technol.201621335035810.1016/j.biortech.2016.03.059 27013188
    [Google Scholar]
  32. BalachandranS. Gnana PrakashD. AnantharajR. Danish John Paul MR. Enhancement of aqueous solubility and extraction of lauric acid using hydrotropes and its interaction studies by COSMO-RS model.J. Dispers. Sci. Technol.202142121820182910.1080/01932691.2020.1789471
    [Google Scholar]
  33. NegiA.S. GaikarV.G. Partitioning of o/p -nitrophenols in the presence of hydrotropes in aqueous solutions.Sep. Sci. Technol.200944373475210.1080/01496390802625768
    [Google Scholar]
  34. MangalA. BhadoriyaS.S. JoshiS. AgrawalG. GuptaA. MandoriaN. Extraction of herbal drugs by using hydrotropy solublization phenomenon.Int. Res. J. Pharm. Appl. Sci.2012216374
    [Google Scholar]
  35. SzabóK. WangP. Peles-LemliB. FangY. KollárL. Kunsági-MátéS. Structure of aggregate of hydrotropic p-toluene sulfonate and hydroxyacetophenone isomers.Colloids Surf. A Physicochem. Eng. Asp.201342214314710.1016/j.colsurfa.2013.01.034
    [Google Scholar]
  36. ManzoorM.F. AhmadN. AhmedZ. Novel extraction techniques and pharmaceutical activities of luteolin and its derivatives.J. Food Biochem.2019439e1297410.1111/jfbc.12974 31489656
    [Google Scholar]
  37. MasilamaniD. MoraisA.B. GandhiN.N. Extraction of vanillin through hydrotropy.Asian J. Chem.2013251231236 22230101
    [Google Scholar]
  38. KambleS. KumbharA. RashinkarG. BargeM. SalunkheR. Ultrasound promoted efficient and green synthesis of β-amino carbonyl compounds in aqueous hydrotropic medium.Ultrason. Sonochem.2012194812815 22230101
    [Google Scholar]
  39. KambleS. RashinkarG. KumbharA. SalunkheR. Hydrotrope induced synthesis of 1,8-dioxo-octahydroxanthenes in aqueous medium.Green Chem. Lett. Rev.20125110110710.1080/17518253.2011.584217
    [Google Scholar]
  40. MouH.Y. HeikkiläE. FardimP. Topochemistry of alkaline, alkaline-peroxide and hydrotropic pretreatments of common reed to enhance enzymatic hydrolysis efficiency.Bioresour. Technol.2013150364110.1016/j.biortech.2013.09.093 24141195
    [Google Scholar]
  41. KorpinenR. FardimP. Lignin extraction from wood biomass by a hydrotropic solution.O Papel20097056982
    [Google Scholar]
  42. MazaudA. LebeufR. LaguerreM. Nardello-RatajV. Hydrotropic extraction of carnosic acid from rosemary with short-chain alkyl polyethylene glycol ethers.ACS Sustain. Chem.& Eng.2020840152681527710.1021/acssuschemeng.0c05078
    [Google Scholar]
  43. PadalkarK.V. GaikarV.G. Extraction of piperine from piper nigrum (black pepper) by aqueous solutions of surfactant and surfactant+ hydrotrope mixtures.Sep. Sci. Technol.20084311-123097311810.1080/01496390802063887
    [Google Scholar]
  44. VankarP.S. Essential oils and fragrances from natural sources.Resonance200494304110.1007/BF02834854
    [Google Scholar]
  45. ChaudharyN. TripathiD. RaiA.K. A technical approach of solubility enhancement of poorly soluble drugs: Liquisolid technique.Curr. Drug Deliv.202017863865010.2174/1567201817666200516155733 32416691
    [Google Scholar]
  46. ShamsK.A. Abdel-AzimN.S. SalehI.A. Green technology: Economically and environmentally innovative methods for extraction of medicinal & aromatic plants (MAP) in Egypt.J. Chem. Pharm. Res.20157510501074
    [Google Scholar]
  47. AlaraO.R. AbdurahmanN.H. UkaegbuC.I. KabbashiN.A. Extraction and characterization of bioactive compounds in Vernonia amygdalina leaf ethanolic extract comparing Soxhlet and microwave-assisted extraction techniques.J. Taibah Univ. Sci.201913141442210.1080/16583655.2019.1582460
    [Google Scholar]
  48. LiuY. WuZ. ZhangY. YuanH. Partitioning of biomolecules in aqueous two-phase systems of polyethylene glycol and nonionic surfactant.Biochem. Eng. J.201269939910.1016/j.bej.2012.08.018
    [Google Scholar]
  49. KumarV.S. RajaC. JayakumarC. A review on solubility enhancement using hydrotropic phenomena.Int. J. Pharm. Pharm. Sci.20146617
    [Google Scholar]
  50. KassingM. JeneltenU. SchenkJ. StrubeJ. A new approach for process development of plant‐based extraction processes.Chem. Eng. Technol.2010333377387
    [Google Scholar]
  51. GhoshU. HaqM.B. ChakrabartyS. Application of systematic technologies for the extraction of novel phytoconstituents from pharmacologically important plants.Int J Chem Analyt Sci2011211531158
    [Google Scholar]
  52. QiG. XiongL. LiH. Hydrotropic pretreatment on wheat straw for efficient biobutanol production.Biomass Bioenergy2019122768310.1016/j.biombioe.2019.01.039
    [Google Scholar]
  53. SasmalD. DasS. BasuS.P. Phcog rev.: Review Article Phytoconstituents and therapeutic potential of Nyctanthes arbortristis Linn.Pharmacogn. Rev.200712344349
    [Google Scholar]
  54. GonnelliC. CacioppoF. GiordanoC. Cucurbita pepo L. Extracts as a versatile hydrotropic source for the synthesis of gold nanoparticles with different shapes.Green Chem. Lett. Rev.201581394710.1080/17518253.2015.1027288
    [Google Scholar]
  55. LebeufR. IllousE. DussenneC. Solvo-surfactant properties of dialkyl glycerol ethers: Application as eco-friendly extractants of plant material through a novel hydrotropic cloud point extraction (HCPE) process.ACS Sustain. Chem.& Eng.2016494815482310.1021/acssuschemeng.6b01101
    [Google Scholar]
  56. KarthyaniS. PandeyA. DevendraL.P. Delignification of cotton stalks using sodium cumene sulfonate for bioethanol production.Biofuels2017
    [Google Scholar]
  57. Takatani-NakaseT. TokuyamaE. KomaiM. TakahashiK. Transcutaneous immunization system using a hydrotropic formulation induces a potent antigen-specific antibody response.PLoS One2012710e4798010.1371/journal.pone.0047980 23110149
    [Google Scholar]
  58. HartatiI. SulistyoH. SediawanW.B. AzisM.M. FahrurroziM. Microwave-assisted urea-based-hydrotropic pretreatment of rice straw: Experimental data and mechanistic kinetic models.ACS Omega2021620132251323910.1021/acsomega.1c01084 34056472
    [Google Scholar]
  59. DhayalanS. RavichandranS.R. VenkatachalamC.D. SengottianM. Effective extraction of resveratrol through hydrotropy.InAIP Conference Proceedings2240110.1063/5.0011054
    [Google Scholar]
  60. TripathiD. RamanS.K. SahooJ. SharmaD.K. RaiA.K. Technical applications of hydrotropes: Sustainable and green carriers.Biointerface Res. Appl. Chem.202313191
    [Google Scholar]
  61. PineloM. RubilarM. JerezM. SineiroJ. NúñezM.J. Effect of solvent, temperature, and solvent-to-solid ratio on the total phenolic content and antiradical activity of extracts from different components of grape pomace.J. Agric. Food Chem.20055362111211710.1021/jf0488110 15769143
    [Google Scholar]
  62. HäcklK. KunzW. Some aspects of green solvents.C. R. Chim.201821657258010.1016/j.crci.2018.03.010
    [Google Scholar]
  63. CláudioA.F.M. NevesM.C. ShimizuK. Canongia LopesJ.N. FreireM.G. CoutinhoJ.A.P. The magic of aqueous solutions of ionic liquids: ionic liquids as a powerful class of catanionic hydrotropes.Green Chem.20151773948396310.1039/C5GC00712G 26379471
    [Google Scholar]
  64. AchikaJ.I. ArthurD.E. GeraldI. AdedayoA. A review on the phytoconstituents and related medicinal properties of plants in the Asteraceae family.IOSR J Appl Chem2014781810.9790/5736‑07810108
    [Google Scholar]
  65. DandekarD.V. GaikarV.G. Hydrotropic extraction of curcuminoids from turmeric.Sep. Sci. Technol.20033851185121510.1081/SS‑120018130
    [Google Scholar]
  66. RadhakrishnanN. GnanamaniA. MandalA.B. A potential antibacterial agent Embelin, a natural benzoquinone extracted from Embelia ribes.Biol. Med.20113217
    [Google Scholar]
  67. ZengX. WeiB. WeiG. Preparation of high embelin containing extracts from the fruits of Embelia laeta (Linn.) Mez with hydrotrope.Shiyong Yaowu Yu Linchuang2014171114391441
    [Google Scholar]
  68. HartatiI. KurniasariL. AnasY. Mathematical model of the hydrotropic microwave assisted extraction of anti malarial agent from andrographis paniculata.Procedia Chem.20151418619210.1016/j.proche.2015.03.027
    [Google Scholar]
  69. SubramanianR. SubbramaniyanP. Noorul AmeenJ. RajV. Double bypasses soxhlet apparatus for extraction of piperine from Piper nigrum.Arab. J. Chem.20169S537S54010.1016/j.arabjc.2011.06.022
    [Google Scholar]
  70. DandekarD.V. JayaprakashaG.K. PatilB.S. Hydrotropic extraction of bioactive limonin from sour orange (Citrus aurantium L.) seeds.Food Chem.2008109351552010.1016/j.foodchem.2007.12.071
    [Google Scholar]
  71. HartatiI. Hydrotropic extraction of theobromine from cocoa bean shell.Majalah Ilmiah Momentum201062
    [Google Scholar]
  72. WangR. ChangY. TanZ. LiF. A novel combined process for extracting, separating and recovering flavonoids from flos sophorae immaturus.Separ. Purif. Tech.201717242243210.1016/j.seppur.2016.08.038
    [Google Scholar]
  73. ThakkerM.R. ParikhJ.K. DesaiM.A. Ultrasound assisted hydrotropic extraction: A greener approach for the isolation of geraniol from the leaves of Cymbopogon martinii.ACS Sustain. Chem.& Eng.2018633215322410.1021/acssuschemeng.7b03374
    [Google Scholar]
  74. GabovK. GosselinkR.J.A. SmedsA.I. FardimP. Characterization of lignin extracted from birch wood by a modified hydrotropic process.J. Agric. Food Chem.20146244107591076710.1021/jf5037728 25290551
    [Google Scholar]
  75. MouH. WuS. HeM. LiuH. HuangH. XuC. Study of the difference between enzyme adsorption onto hydrotropic and alkali lignin separated from eucalyptus and bamboo.BioResources20181311441145610.15376/biores.13.1.1441‑1456
    [Google Scholar]
  76. JainP.L.B. PatelS.R. DesaiM.A. Enrichment of patchouli alcohol in patchouli oil by aiding sonication in hydrotropic extraction.Ind. Crops Prod.202015811301110.1016/j.indcrop.2020.113011
    [Google Scholar]
  77. ThakkerM.R. ParikhJ.K. DesaiM.A. Microwave assisted extraction of essential oil from the leaves of Palmarosa: Multi-response optimization and predictive modelling.Ind. Crops Prod.20168631131910.1016/j.indcrop.2016.03.055
    [Google Scholar]
  78. FanL. JinR. LiuY. AnM. ChenS. Enhanced extraction of patchouli alcohol from Pogostemon cablin by microwave radiation-accelerated ionic liquid pretreatment.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2011879303653365710.1016/j.jchromb.2011.09.035 21982506
    [Google Scholar]
  79. LathaC. Selective extraction of embelin from Embelia ribes by hydrotropes.Sep. Sci. Technol.200641163721372910.1080/01496390600957207
    [Google Scholar]
  80. SubbaraoC.V. ChakravarthyI.P.K. Sai BharadwajA.V.S.L. PrasadK.M.M. Functions of hydrotropes in solutions.Chem. Eng. Technol.201235222523710.1002/ceat.201100484
    [Google Scholar]
  81. LeiF. Ting-tingG. Xiu-pingQ. Feng-shengZ. Extraction of reserpine from rauwolfia vomitoria with acidic ethanol.Nat Prod Res Dev2007
    [Google Scholar]
  82. OkhuaroboA. Ehizogie FalodunJ. ErharuyiO. ImiejeV. FalodunA. LangerP. Harnessing the medicinal properties of Andrographis paniculata for diseases and beyond: a review of its phytochemistry and pharmacology.Asian Pac. J. Trop. Dis.20144321322210.1016/S2222‑1808(14)60509‑0
    [Google Scholar]
  83. OlssonJ. NovyV. NielsenF. WallbergO. GalbeM. Sequential fractionation of the lignocellulosic components in hardwood based on steam explosion and hydrotropic extraction.Biotechnol. Biofuels20191211210.1186/s13068‑018‑1346‑y 30622643
    [Google Scholar]
  84. WuX. ZhangT. LiuN. ZhaoY. TianG. WangZ. Sequential extraction of hemicelluloses and lignin for wood fractionation using acid hydrotrope at mild conditions.Ind. Crops Prod.202014511208610.1016/j.indcrop.2020.112086
    [Google Scholar]
  85. NarayananM. BaskaranD. SampathV. Experimental design of hydrotropic extraction for recovery of bioactive limonin from lemon (Citrus limon L.) seeds.Sep. Sci. Technol.202257570771810.1080/01496395.2021.1943683
    [Google Scholar]
  86. MazaudA. LebeufR. PierlotC. LaguerreM. Nardello-RatajV. Amyl xyloside, a selective sugar-based hydrotrope for the aqueous extraction of carnosic acid from rosemary.ACS Sustain. Chem.& Eng.20219134801481110.1021/acssuschemeng.0c09366
    [Google Scholar]
  87. NitbaniF.O. Jumina, Siswanta D, Solikhah EN. Isolation and antibacterial activity test of lauric acid from crude coconut oil (Cocos nucifera L.).Procedia Chem.20161813214010.1016/j.proche.2016.01.021
    [Google Scholar]
  88. KadamJ. PatilA. GanganV. LokhandeM. BhaweV. Hydrotropes as effective reaction media for the synthesis of metoclopramide hydrochloride.J. Chem. Biol. Phys. Sci.2012231192
    [Google Scholar]
  89. PawarK. DesaiM.A. ParikhJ. Parametric optimization and thermo-dynamic studies on the influence of electrolytes on sodium salicylate in aqueous solution.Tenside Surfactants Deterg.201350428929610.3139/113.110262
    [Google Scholar]
  90. RamanG. GaikarV.G. Extraction of piperine from Piper nigrum (black pepper) by hydrotropic solubilization.Ind. Eng. Chem. Res.200241122966297610.1021/ie0107845
    [Google Scholar]
  91. NagarajanJ. Wah HengW. GalanakisC.M. Extraction of phytochemicals using hydrotropic solvents.Sep. Sci. Technol.20165171151116510.1080/01496395.2016.1143842
    [Google Scholar]
  92. MishraS.P. GaikarV.G. Recovery of diosgenin from dioscorea rhizomes using aqueous hydrotropic solutions of sodium cumene sulfonate.Ind. Eng. Chem. Res.200443175339534610.1021/ie034091v
    [Google Scholar]
  93. MishraS.P. GaikarV.G. Hydrotropic extraction process for recovery of forskolin from Coleus forskohlii roots.Ind. Eng. Chem. Res.200948178083809010.1021/ie801728d
    [Google Scholar]
  94. KumoroA.C. HasanM. SinghH. Extraction of andrographolide from Andrographis paniculata dried leaves using supercritical CO2 and ethanol mixture.Ind. Eng. Chem. Res.201958274275110.1021/acs.iecr.8b02243
    [Google Scholar]
  95. GorganiL. MohammadiM. NajafpourG.D. NikzadM. Piperine—the bioactive compound of black pepper: From isolation to medicinal formulations.Compr. Rev. Food Sci. Food Saf.201716112414010.1111/1541‑4337.12246 33371546
    [Google Scholar]
  96. QinS. LvC. WangQ. Extraction, identification, and antioxidant property evaluation of limonin from pummelo seeds.Anim. Nutr.20184328128710.1016/j.aninu.2018.05.005 30175256
    [Google Scholar]
  97. GhogareD. PatilS. Hydrotropic solubilization: Tool for eco-friendly analysis.Int. J. Pharm. Pharm. Res.2018113300322
    [Google Scholar]
  98. AnsariK.B. GaikarV.G. Green hydrotropic extraction technology for delignification of sugarcane bagasse by using alkybenzene sulfonates as hydrotropes.Chem. Eng. Sci.201411515716610.1016/j.ces.2013.10.042
    [Google Scholar]
  99. HuangW. XueA. NiuH. JiaZ. WangJ. Optimised ultrasonic-assisted extraction of flavonoids from Folium eucommiae and evaluation of antioxidant activity in multi-test systems in vitro.Food Chem.200911431147115410.1016/j.foodchem.2008.10.079
    [Google Scholar]
  100. GuptaK.R. PounikarA.R. JaiswalP.M. Formulation and evaluation of hydrotropic solid dispersions of curcumin.J Curr Chem Pharm Sci201991207824594
    [Google Scholar]
  101. SubramaniamS. PalanisamyA. SivasubramanianA. An unique solvent assisted ‘green’ hydrotropic precipitation and response surface optimization for isolation of the dietary micronutrient β-sitosterol- d -glucopyranoside from Desmostachya bipinnata.RSC Advances20155107479748410.1039/C4RA13923B
    [Google Scholar]
  102. HayouniE. AbedrabbaM. BouixM. HamdiM. The effects of solvents and extraction method on the phenolic contents and biological activities in vitro of Tunisian Quercus coccifera L. and Juniperus phoenicea L. fruit extracts.Food Chem.200710531126113410.1016/j.foodchem.2007.02.010
    [Google Scholar]
  103. MohantyC. SahooS.K. The in vitro stability and in vivo pharmacokinetics of curcumin prepared as an aqueous nanoparticulate formulation.Biomaterials201031256597661110.1016/j.biomaterials.2010.04.062 20553984
    [Google Scholar]
  104. ShaikhJ. AnkolaD.D. BeniwalV. SinghD. KumarM.N.V.R. Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer.Eur. J. Pharm. Sci.2009373-422323010.1016/j.ejps.2009.02.019 19491009
    [Google Scholar]
  105. de SouzaJ.F. da Silva PontesK. AlvesT.F.R. Structural comparison, physicochemical properties, and in vitro release profile of curcumin-loaded lyotropic liquid crystalline nanoparticle: Influence of hydrotrope as interface stabilizers.J. Mol. Liq.202030611286110.1016/j.molliq.2020.112861
    [Google Scholar]
  106. TripathiD. MishraS. RaiA.K. SahooJ. SharmaD.K. SinghY. Curcumin-loaded hydrotropic solid dispersion topical gel development and evaluation: A greener approach towards transdermal delivery of drugs.Curr. Green Chem.202291263910.2174/2213346110666221020121020
    [Google Scholar]
  107. ChavanT.C. KuvalekarA.A. A review on drug induced hepatotoxicity and alternative therapies.J. Nutrit. Health Food Sci.201973129
    [Google Scholar]
  108. GaikarV.G. DandekarD.V. Inventors; Council of scientific, industrial research csir, assignee. process for extraction of curcuminoids from curcuma species.United States patent US 6,224,8772001
  109. GaikarV.G. RamanG. Inventors; Council of scientific, industrial research csir, assignee. process for extraction of piperine from piper species.United States patent US 6,365,6012002
  110. KendreP.N. PandeV.V. ChavanK.M. Novel formulation strategy to enhance solubility of quercetin.Pharmacophore201453358370
    [Google Scholar]
  111. MaheshwariR.K. JainS. PadriaA. MulaniP. BaghelJ.S. MaheshwariN. “Eco-friendly extraction using solids” - A novel application of mixed solvency concept.J. Drug Deliv. Ther.20199224424910.22270/jddt.v9i2.2409
    [Google Scholar]
  112. MbonyiryivuzeA. MwakikungaB.W. DhlaminiS.M. MaazaM. Fourier transform infrared spectroscopy for sepia melanin.Physics and Materials Chemistry2015322529
    [Google Scholar]
  113. ZongoS. SanusiK. BrittonJ. Nonlinear optical properties of natural laccaic acid dye studied using Z-scan technique.Opt. Mater.20154627027510.1016/j.optmat.2015.04.031
    [Google Scholar]
  114. ZongoS. KerasidouA.P. SoneB.T. Nonlinear optical properties of poly(methyl methacrylate) thin films doped with Bixa Orellana dye.Appl. Surf. Sci.2015340727710.1016/j.apsusc.2015.02.161
    [Google Scholar]
  115. DialloA. ZongoS. MthunziP. Z-scan and optical limiting properties of Hibiscus Sabdariffa dye.Appl. Phys. B2014117386186710.1007/s00340‑014‑5900‑4
    [Google Scholar]
  116. MatiniseN. FukuX.G. KaviyarasuK. MayedwaN. MaazaM. ZnO nanoparticles via Moringa oleifera green synthesis: Physical properties & mechanism of formation.Appl. Surf. Sci.201740633934710.1016/j.apsusc.2017.01.219
    [Google Scholar]
  117. NwanyaA.C. NdipingwiM.M. IkpoC.O. Zea mays lea silk extract mediated synthesis of nickel oxide nanoparticles as positive electrode material for asymmetric supercabattery.J. Alloys Compd.202082215358110.1016/j.jallcom.2019.153581
    [Google Scholar]
  118. DialloA. KaviyarasuK. NdiayeS. Structural, optical and photocatalytic applications of biosynthesized NiO nanocrystals.Green Chem. Lett. Rev.201811216617510.1080/17518253.2018.1447604
    [Google Scholar]
  119. SackeyJ. NwanyaA.C. BashirA.K.H. Electrochemical properties of Euphorbia pulcherrima mediated copper oxide nanoparticles.Mater. Chem. Phys.202024412271410.1016/j.matchemphys.2020.122714
    [Google Scholar]
  120. DakkaA. LafaitJ. SellaC. Optical properties of Ag–TiO_2 nanocermet films prepared by cosputtering and multilayer deposition techniques.Appl. Opt.200039162745275310.1364/AO.39.002745 18345199
    [Google Scholar]
/content/journals/cms/10.2174/0126661454287280240102095253
Loading
/content/journals/cms/10.2174/0126661454287280240102095253
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test