Skip to content
2000
Volume 18, Issue 6
  • ISSN: 2666-1454
  • E-ISSN: 2666-1462

Abstract

In the field of science, multi-disciplinary analysis is a flexible and comprehensive approach to tackling difficult issues by combining data, expertise, and techniques from different areas of study. This article examines the importance, techniques, and results of cooperative endeavors that bring together different disciplines. The article also focuses on the moral and societal consequences of combining and analyzing data, with particular attention to safeguarding data privacy, minimizing biases, and promoting responsible use of AI. For instance, stringent steps are required to de-identify the data and guarantee that people's personal information is preserved in medical research that integrates patient data from several sources. Another important consideration is minimizing biases. To provide equitable employment chances, efforts are made to eradicate racial or gender prejudices in AI-driven recruiting procedures. The present article delves into the most recent breakthroughs in multi-science analysis, specifically the integration of artificial intelligence, cross-sector collaborations, and a growing emphasis on sustainable development. Furthermore, we underscore the critical significance of clear and open communication and the overall societal impact of this type of research. By working together and pursuing interdisciplinary approaches, multi-science analysis can pave the way towards a more interconnected and sustainable future, empowering society to tackle global challenges and bolster resilience in the face of intricate problems. Multi-science analysis often faces hurdles related to data heterogeneity, as integrating data from various sources with differing formats and quality standards can be technically demanding. Moreover, navigating the differing terminologies and methodologies across disciplines can sometimes lead to communication barriers and conflicts, requiring effective coordination and translation efforts. Additionally, ensuring equitable collaboration and recognition among diverse researchers and stakeholders can be a challenge, particularly in competitive academic or industry environments.

Loading

Article metrics loading...

/content/journals/cms/10.2174/0126661454279515231225151023
2024-01-25
2025-12-07
Loading full text...

Full text loading...

References

  1. Jerkovic´I. CavalliG. Understanding 3D genome organization by multidisciplinary methods.Nat. Rev. Mol. Cell Biol.202122851152810.1038/s41580‑021‑00362‑w 33953379
    [Google Scholar]
  2. DwivediY.K. HughesL. BaabdullahA.M. Metaverse beyond the hype: Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy.Int. J. Inf. Manage.20226610254210.1016/j.ijinfomgt.2022.102542
    [Google Scholar]
  3. VerhoefP.C. BroekhuizenT. BartY. Digital transformation: A multidisciplinary reflection and research agenda.J. Bus. Res.202112288990110.1016/j.jbusres.2019.09.022
    [Google Scholar]
  4. GrewalD. HullandJ. KopalleP.K. KarahannaE. The future of technology and marketing: A multidisciplinary perspective.J. Acad. Mark. Sci.2020481810.1007/s11747‑019‑00711‑4
    [Google Scholar]
  5. AmannJ. BlasimmeA. VayenaE. FreyD. MadaiV.I. Explainability for artificial intelligence in healthcare: A multidisciplinary perspective.BMC Med. Inform. Decis. Mak.202020131010.1186/s12911‑020‑01332‑6 33256715
    [Google Scholar]
  6. EveraertsS. HeynsA. LangerD. COVID-19 recovery: Benefits of multidisciplinary respiratory rehabilitation.BMJ Open Respir. Res.202181e00083710.1136/bmjresp‑2020‑000837 34489236
    [Google Scholar]
  7. WangC. ZhaoZ. ZhouM. SigmundO. ZhangX.S. A comprehensive review of educational articles on structural and multidisciplinary optimization.Struct. Multidiscipl. Optim.20216452827288010.1007/s00158‑021‑03050‑7
    [Google Scholar]
  8. MartinezB. ReaserJ.K. DehganA. Technology innovation: Advancing capacities for the early detection of and rapid response to invasive species.Biol. Invasions20202217510010.1007/s10530‑019‑02146‑y
    [Google Scholar]
  9. BuhalisD. HarwoodT. BogicevicV. VigliaG. BeldonaS. HofackerC. Technological disruptions in services: Lessons from tourism and hospitality.J. Serv. Manag.201930448450610.1108/JOSM‑12‑2018‑0398
    [Google Scholar]
  10. Ajubita RubioN. Invasive Alien Species in a Changing World: a Juridical Analysis of a Global Challenge. A Study of the Interconnection between Climate Change and Invasive Alien Species in Marine Ecosystems.Master’s Thesis, UiT Norges arktiske universitet2019
    [Google Scholar]
  11. BrinkerinkM. GallachóirB.Ó. DeaneP. A comprehensive review on the benefits and challenges of global power grids and intercontinental interconnectors.Renew. Sustain. Energy Rev.201910727428710.1016/j.rser.2019.03.003
    [Google Scholar]
  12. WoodR. LiuA.G. BowyerF. Integrated records of environmental change and evolution challenge the Cambrian Explosion.Nat. Ecol. Evol.20193452853810.1038/s41559‑019‑0821‑6 30858589
    [Google Scholar]
  13. KönigC. WeigeltP. SchraderJ. TaylorA. KattgeJ. KreftH. Biodiversity data integration-the significance of data resolution and domain.PLoS Biol.2019173e300018310.1371/journal.pbio.3000183 30883539
    [Google Scholar]
  14. DezaA. KonkleT. Emergent properties of foveated perceptual systemsarXiv preprint arXiv2006079912020
    [Google Scholar]
  15. KoumuraT. TerashimaH. FurukawaS. Cascaded tuning to amplitude modulation for natural sound recognition.J. Neurosci.201939285517553310.1523/JNEUROSCI.2914‑18.2019 31092586
    [Google Scholar]
  16. DwivediY.K. KshetriN. HughesL. Opinion paper: “So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy.Int. J. Inf. Manage.20237110264210.1016/j.ijinfomgt.2023.102642
    [Google Scholar]
  17. HoS.J. HsuY.S. LaiC.H. ChenF.H. YangM.H. Applying game-based experiential learning to comprehensive sustainable development-based education.Sustainability2022143117210.3390/su14031172
    [Google Scholar]
  18. AalbergM. RoaasT. AuneM. BjerkeØ. AuneT. In pursuit of a comprehensive understanding of expertise development: A comparison between paths to world-class performance in complex technical vs. endurance demanding sports.Sports20221021610.3390/sports10020016 35202056
    [Google Scholar]
  19. HaqueF.M. IshibashiJ.S.A. LidstonC.A.L. Defining the macromolecules of tomorrow through synergistic sustainable polymer research.Chem. Rev.202212266322637310.1021/acs.chemrev.1c00173 35133803
    [Google Scholar]
  20. JiangW.J. TangT. ZhangY. HuJ.S. Synergistic modulation of non-precious-metal electrocatalysts for advanced water splitting.Acc. Chem. Res.20205361111112310.1021/acs.accounts.0c00127 32466638
    [Google Scholar]
  21. GümüsayAA ClausL AmisJ Engaging with grand challenges: An institutional logics perspective.Organ Theory20201310.1177/2631787720960487
    [Google Scholar]
  22. De Maria MarchianoR. Di SanteG. PiroG. Translational research in the era of precision medicine: Where we are and where we will go.J. Pers. Med.202111321610.3390/jpm11030216 33803592
    [Google Scholar]
  23. LeppinA.L. MahoneyJ.E. StevensK.R. Situating dissemination and implementation sciences within and across the translational research spectrum.J. Clin. Transl. Sci.20204315215810.1017/cts.2019.392 32695482
    [Google Scholar]
  24. RenL. DingL. GuoQ. GongY. YuG. WangF. Characterization, carbon-ash separation and resource utilization of coal gasification fine slag: A comprehensive review.J. Clean. Prod.202339813655410.1016/j.jclepro.2023.136554
    [Google Scholar]
  25. UmarM. JiX. KirikkaleliD. ShahbazM. ZhouX. Environmental cost of natural resources utilization and economic growth: Can China shift some burden through globalization for sustainable development?Sustain. Dev.20202861678168810.1002/sd.2116
    [Google Scholar]
  26. EarwakerH. NakhaeizadehS. SmitN.M. MorganR.M. A cultural change to enable improved decision-making in forensic science: A six phased approach.Sci. Justice202060191910.1016/j.scijus.2019.08.006 31924294
    [Google Scholar]
  27. KittelA. LarkinP. ElsworthyN. LindsayR. SpittleM. Effectiveness of 360° virtual reality and match broadcast video to improve decision-making skill.Sci. Med. Footb.20204425526210.1080/24733938.2020.1754449
    [Google Scholar]
  28. DavisA.M. WebsterA.J. FitchP. The changing face of science communication, technology, extension and improved decision-making at the farm-water quality interface.Mar. Pollut. Bull.202116911253410.1016/j.marpolbul.2021.112534 34225212
    [Google Scholar]
  29. RustJ. Has dynamic programming improved decision making?Annu. Rev. Econ.201911183385810.1146/annurev‑economics‑080218‑025721
    [Google Scholar]
  30. SwartzT.H. PalermoA-G.S. MasurS.K. AbergJ.A. The science and value of diversity: Closing the gaps in our understanding of inclusion and diversity.J. Infect. Dis.2019220S2S33S4110.1093/infdis/jiz174
    [Google Scholar]
  31. HymelS. KatzJ. Designing classrooms for diversity: Fostering social inclusion.Educ. Psychol.201954433133910.1080/00461520.2019.1652098
    [Google Scholar]
  32. MoiranoR. SánchezM.A. ŠtěpánekL. Creative interdisciplinary collaboration: A systematic literature review.Think. Skills Creativity20203510062610.1016/j.tsc.2019.100626
    [Google Scholar]
  33. DaviesS.J. AbiemI. Abu SalimK. ForestGEO: Understanding forest diversity and dynamics through a global observatory network.Biol. Conserv.202125310890710.1016/j.biocon.2020.108907
    [Google Scholar]
  34. VinuesaR. AzizpourH. LeiteI. The role of artificial intelligence in achieving the Sustainable Development Goals.Nat. Commun.202011123310.1038/s41467‑019‑14108‑y 31932590
    [Google Scholar]
  35. LongoF. PadovanoA. UmbrelloS. Value-oriented and ethical technology engineering in industry 5.0: A human-centric perspective for the design of the factory of the future.Appl. Sci.20201012418210.3390/app10124182
    [Google Scholar]
  36. AshammakhiN. HasanA. KaarelaO. Advancing frontiers in bone bioprinting.Adv. Healthc. Mater.201987180104810.1002/adhm.201801048 30734530
    [Google Scholar]
  37. WangW. FengB. ZhouJ.M. TangD. Plant immune signaling: Advancing on two frontiers.J. Integr. Plant Biol.202062122410.1111/jipb.12898 31846204
    [Google Scholar]
  38. FebtrikoA. Effectiveness of occupational therapy using robot manipulator for elderly.Int J Multi-Sci202010919
    [Google Scholar]
  39. RuswandiI. SunaryaE. SuwiryoD.H. Implementation of the hope family program” policy at Purabaya Dictrict, Sukabumi, West Java.Int J Multi-Sci20201051428
    [Google Scholar]
  40. SimamoraV.T.R. RitongaR.G. AnggrainiE.F. NainggolanE.A. NapitupuluS. Writing problems in junior high school (SMPN 1) pematangsiantar.Int J Multi-Sci20222118088
    [Google Scholar]
  41. GoharF. MaschmeyerP. MfarrejB. Driving medical innovation through interdisciplinarity: unique opportunities and challenges.Front. Med.201963510.3389/fmed.2019.00035 30863750
    [Google Scholar]
  42. TramontiM. TramontiL. DochshanovA. Multidisciplinary strategies in education.Conference: The Future of Education2019
    [Google Scholar]
  43. RoyM. RoyA. The rise of interdisciplinarity in engineering education in the era of industry 4.0: Implications for management practice.IEEE Eng. Manage. Rev.2021493567010.1109/EMR.2021.3095426
    [Google Scholar]
  44. MusicaroR.M. SpinazzolaJ. ArvidsonJ. The complexity of adaptation to childhood polyvictimization in youth and young adults: Recommendations for multidisciplinary responders.Trauma Violence Abuse2019201819810.1177/1524838017692365 29333968
    [Google Scholar]
  45. SundaresanP.D. KrugerE. GeachieJ.M. TennantM. Special needs dentistry in multidisciplinary head and neck cancer management–characterizing scope and complexity of patient care.Spec. Care Dentist.2022 36396444
    [Google Scholar]
  46. WihlJ. FaliniV. BorgS. Implementation of the measure of case discussion complexity to guide selection of prostate cancer patients for multidisciplinary team meetings.Cancer Med.20231214151491515810.1002/cam4.6189 37255390
    [Google Scholar]
  47. LabrooM.R. StuderA.J. RutkoskiJ.E. Heterosis and hybrid crop breeding: A multidisciplinary review.Front. Genet.20211264376110.3389/fgene.2021.643761 33719351
    [Google Scholar]
  48. LemieuxV.L. FengC. Conclusion: Theorizing from multidisciplinary perspectives on the design of blockchain and distributed ledger systems (Part 2).Building Decentralized Trust.Springer2021129163
    [Google Scholar]
  49. LimY.S. HarlandD.P. DawsonT.L.Jr Wanted, dead and alive: Why a multidisciplinary approach is needed to unlock hair treatment potential.Exp. Dermatol.201928551752710.1111/exd.13898 30706973
    [Google Scholar]
  50. GuoL. WangD. GuF. LiY. WangY. ZhouR. Evolution and trends in intelligent tutoring systems research: A multidisciplinary and scientometric view.Asia Pac. Educ. Rev.202122344146110.1007/s12564‑021‑09697‑7
    [Google Scholar]
  51. FisherM.T. JurkenasD. JambajantsanA. Multidisciplinary digital methodologies for documentation and preservation of immovable Archaeological heritage in the Khovd River Valley, Western Mongolia.F1000 Res.202211125010.12688/f1000research.126740.1
    [Google Scholar]
  52. BardhanI. ChenH. KarahannaE. Connecting systems, data, and people: A multidisciplinary research roadmap for chronic disease management.Manage. Inf. Syst. Q.2020441185200
    [Google Scholar]
  53. FlageR. AvenT. ZioE. BaraldiP. Concerns, challenges, and directions of development for the issue of representing uncertainty in risk assessment.Risk Anal.20143471196120710.1111/risa.12247 24984873
    [Google Scholar]
  54. SamsonS. RenekeJ.A. WiecekM.M. A review of different perspectives on uncertainty and risk and an alternative modeling paradigm.Reliab. Eng. Syst. Saf.200994255856710.1016/j.ress.2008.06.004
    [Google Scholar]
  55. JohnsonD.B. NebhanC.A. MoslehiJ.J. BalkoJ.M. Immune-checkpoint inhibitors: Long-term implications of toxicity.Nat. Rev. Clin. Oncol.202219425426710.1038/s41571‑022‑00600‑w 35082367
    [Google Scholar]
  56. XiongT.Y. RedwoodS. PrendergastB. ChenM. Coronaviruses and the cardiovascular system: Acute and long-term implications.Eur. Heart J.202041191798180010.1093/eurheartj/ehaa231 32186331
    [Google Scholar]
  57. GeorgeG. MerrillR.K. SchillebeeckxS.J.D. Digital sustainability and entrepreneurship: How digital innovations are helping tackle climate change and sustainable development.Entrep. Theory Pract.2021455999102710.1177/1042258719899425
    [Google Scholar]
  58. van der LeeuwS. The role of narratives in human-environmental relations: An essay on elaborating win-win solutions to climate change and sustainability.Clim. Change2020160450951910.1007/s10584‑019‑02403‑y
    [Google Scholar]
  59. JebrilN. World Health Organization declared a pandemic public health menace: A systematic review of the coronavirus disease 2019 ‘COVID-19,’SSRN3566298202010.2139/ssrn.3566298
    [Google Scholar]
  60. CorreiaS. LuckS. VernerE. Pandemics depress the economy, public health interventions do not: Evidence from the 1918 flu.J. Econ. Hist.202282491795710.1017/S0022050722000407
    [Google Scholar]
  61. EchenduA.J. OkaforP.C.C. Smart city technology: A potential solution to Africa’s growing population and rapid urbanization?Dev. Stud. Res.202181829310.1080/21665095.2021.1894963
    [Google Scholar]
  62. SuL. FanJ. FuL. Exploration of smart city construction under new urbanization: A case study of Jinzhou-Huludao Coastal Area.Sustain Comput-infor20202710040310.1016/j.suscom.2020.100403
    [Google Scholar]
  63. BadalF.R. DasP. SarkerS.K. DasS.K. A survey on control issues in renewable energy integration and microgrid.Prot Control Mod Power Syst201941810.1186/s41601‑019‑0122‑8
    [Google Scholar]
  64. MararakanyeN. BekkerB. Renewable energy integration impacts within the context of generator type, penetration level and grid characteristics.Renew. Sustain. Energy Rev.201910844145110.1016/j.rser.2019.03.045
    [Google Scholar]
  65. GoodsellD.S. ZardeckiC. Di CostanzoL. RCSB protein data bank: Enabling biomedical research and drug discovery.Protein Sci.2020291526510.1002/pro.3730 31531901
    [Google Scholar]
  66. BenamK.H. GilchristS. KleensangA. SatzA.B. WillettC. ZhangQ. Exploring new technologies in biomedical research.Drug Discov. Today20192461242124710.1016/j.drudis.2019.04.001 30953865
    [Google Scholar]
  67. KeskinboraK.H. Medical ethics considerations on artificial intelligence.J. Clin. Neurosci.20196427728210.1016/j.jocn.2019.03.001 30878282
    [Google Scholar]
  68. RoblesC.M. Artificial intelligence: From ethics to law.Telecomm. Policy202044610193710.1016/j.telpol.2020.101937
    [Google Scholar]
  69. CarringtonM. ChatzidakisA. GoworekH. ShawD. Consumption ethics: A review and analysis of future directions for interdisciplinary research.J. Bus. Ethics2021168221523810.1007/s10551‑020‑04425‑4
    [Google Scholar]
  70. KawamiyaM. HajimaT. TachiiriK. WatanabeS. YokohataT. Two decades of Earth system modeling with an emphasis on Model for Interdisciplinary Research on Climate (MIROC).Prog. Earth Planet. Sci.2020716410.1186/s40645‑020‑00369‑5
    [Google Scholar]
  71. KustersR. Interdisciplinary research in artificial intelligence: Challenges and opportunities.Front. Big Data2020357797410.3389/fdata.2020.577974
    [Google Scholar]
  72. BeekerT. MillsC. BhugraD. Psychiatrization of society: A conceptual framework and call for transdisciplinary research.Front. Psychiatry20211264555610.3389/fpsyt.2021.645556 34149474
    [Google Scholar]
  73. LawrenceM.G. WilliamsS. NanzP. RennO. Characteristics, potentials, and challenges of transdisciplinary research.One Earth202251446110.1016/j.oneear.2021.12.010
    [Google Scholar]
  74. HoffmannS. Thompson KleinJ. PohlC. Linking transdisciplinary research projects with science and practice at large: Introducing insights from knowledge utilization.Environ. Sci. Policy2019102364210.1016/j.envsci.2019.08.011
    [Google Scholar]
  75. DakhiO. JamaJ. IrfanD. Blended learning: A 21st century learning model at college.Int J Mult Sci20201085065
    [Google Scholar]
  76. DingZ. ZhangY. TanW. PanX. TangH. Pricing based charging navigation scheme for highway transportation to enhance renewable generation integration.IEEE Trans. Ind. Appl.202359110811710.1109/TIA.2022.3203960
    [Google Scholar]
  77. NguyenT.T. NgoH.H. GuoW. WangX.C. A new model framework for sponge city implementation: Emerging challenges and future developments.J. Environ. Manage.202025310968910.1016/j.jenvman.2019.109689 31654929
    [Google Scholar]
  78. WeidlichE.W.A. FlóridoF.G. SorriniT.B. BrancalionP.H.S. Controlling invasive plant species in ecological restoration: A global review.J. Appl. Ecol.20205791806181710.1111/1365‑2664.13656
    [Google Scholar]
  79. KlausV.H. KiehlK. A conceptual framework for urban ecological restoration and rehabilitation.Basic Appl. Ecol.202152829410.1016/j.baae.2021.02.010
    [Google Scholar]
  80. BustamanteM.M.C. SilvaJ.S. ScariotA. Ecological restoration as a strategy for mitigating and adapting to climate change: lessons and challenges from Brazil.Mitig. Adapt. Strategies Glob. Change20192471249127010.1007/s11027‑018‑9837‑5
    [Google Scholar]
  81. DemetropoulouL. LilliM.A. PetousiI. Innovative methodology for the prioritization of the Program of Measures for integrated water resources management of the Region of Crete, Greece.Sci. Total Environ.2019672617010.1016/j.scitotenv.2019.03.397 30954824
    [Google Scholar]
  82. KulenbekovZ.E. KhazievaE. OrunbaevS.Z. AsanovB.D. New approaches and advanced methodology in integrated water resources management: Amu darya river basin.Water Resource Management in Central Asia and Afghanistan: Current and Future Environmental and Water Issues.Springer202117919310.1007/978‑3‑030‑68337‑5_17
    [Google Scholar]
  83. VerduciE. Di ProfioE. FioreG. ZuccottiG. Integrated approaches to combatting childhood obesity.Ann. Nutr. Metab.202278S281910.1159/000524962
    [Google Scholar]
  84. VlaevI. TaylorM.J. TaylorD. Testing a multicomponent lifestyle intervention for combatting childhood obesity.BMC Public Health202121182410.1186/s12889‑021‑10838‑1 33926412
    [Google Scholar]
  85. BredaJ. Farrugia Sant’AngeloV. DulevaV. Mobilizing governments and society to combat obesity: Reflections on how data from the WHO European Childhood Obesity Surveillance Initiative are helping to drive policy progress.Obes. Rev.202122S6Suppl. 6e1321710.1111/obr.13217 34378847
    [Google Scholar]
  86. HoangA.T. PhamV.V. NguyenX.P. Integrating renewable sources into energy system for smart city as a sagacious strategy towards clean and sustainable process.J. Clean. Prod.202130512716110.1016/j.jclepro.2021.127161
    [Google Scholar]
  87. KimH. ChoiH. KangH. AnJ. YeomS. HongT. A systematic review of the smart energy conservation system: From smart homes to sustainable smart cities.Renew. Sustain. Energy Rev.202114011075510.1016/j.rser.2021.110755
    [Google Scholar]
  88. LiuY. YangC. JiangL. XieS. ZhangY. Intelligent edge computing for IoT-based energy management in smart cities.IEEE Netw.201933211111710.1109/MNET.2019.1800254
    [Google Scholar]
  89. GoodchildM. Relational systems thinking: The Dibaajimowin (story) of re-theorizing ‘systems thinking’ and ‘complexity science,’.JASC202221537610.47061/jabsc.v2i1.2027
    [Google Scholar]
  90. PilcherL.A. Embedding systems thinking in tertiary chemistry for sustainability.Phys. Sci. Rev.202210.1515/psr‑2022‑0119
    [Google Scholar]
  91. OrgillM. YorkS. MacKellarJ. Introduction to systems thinking for the chemistry education community.J. Chem. Educ.201996122720272910.1021/acs.jchemed.9b00169
    [Google Scholar]
  92. PlanoC.V.L. Meaningful integration within mixed methods studies: Identifying why, what, when, and how.Contemp. Educ. Psychol.20195710611110.1016/j.cedpsych.2019.01.007
    [Google Scholar]
  93. Yousefi NooraieR. SaleJ.E.M. MarinA. RossL.E. Social network analysis: An example of fusion between quantitative and qualitative methods.J. Mixed Methods Res.202014111012410.1177/1558689818804060
    [Google Scholar]
  94. NoyesJ. BoothA. MooreG. FlemmingK. TunçalpÖ. ShakibazadehE. Synthesising quantitative and qualitative evidence to inform guidelines on complex interventions: Clarifying the purposes, designs and outlining some methods.BMJ Glob. Health20194S1e00089310.1136/bmjgh‑2018‑000893
    [Google Scholar]
  95. HuangS. ZengZ. OtaK. DongM. WangT. XiongN.N. An intelligent collaboration trust interconnections system for mobile information control in ubiquitous 5G networks.IEEE Trans. Netw. Sci. Eng.20218134736510.1109/TNSE.2020.3038454
    [Google Scholar]
  96. StoneL. SimberloffD. Artzy-RandrupY. Network motifs and their origins.PLOS Comput. Biol.2019154e100674910.1371/journal.pcbi.1006749 30973867
    [Google Scholar]
  97. AntoniettiR. FalboP. FontiniF. GrassiR. RizziniG. The world trade network: Country centrality and the COVID-19 pandemic.Appl. Netw. Sci.2022711810.1007/s41109‑022‑00452‑4 35340979
    [Google Scholar]
  98. CheS. KongZ. PengH. Federated multi-view learning for private medical data integration and analysis.ACM Trans. Intell. Syst. Technol.202213412310.1145/3501816
    [Google Scholar]
  99. SubramanianI. VermaS. KumarS. JereA. AnamikaK. Multi-omics data integration, interpretation, and its application.Bioinform. Biol. Insights20201410.1177/1177932219899051 32076369
    [Google Scholar]
  100. MishraP. RogerJ-M. Jouan-Rimbaud-BouveresseD. Recent trends in multi-block data analysis in chemometrics for multi-source data integration.Trends Analyt. Chem.202113711620610.1016/j.trac.2021.116206
    [Google Scholar]
  101. LimH. XieL. Omics data integration and analysis for systems pharmacology.Methods Mol. Biol.201919921410.1007/978‑1‑4939‑9089‑4_11
    [Google Scholar]
  102. FearnleyC.J. Mind mapping in qualitative data analysis: Managing interview data in interdisciplinary and multi‐sited research projects.Geo202291e0010910.1002/geo2.109
    [Google Scholar]
  103. ZimmermannovaJ. RedeckerA.P. MensikM. JuergensC. Geospatial data analysis and economic evaluation of companies for sustainable business development—an interdisciplinary teaching approach.Sustainability202113201124510.3390/su132011245
    [Google Scholar]
  104. LueckenM.D. BüttnerM. ChaichoompuK. Benchmarking atlas-level data integration in single-cell genomics.Nat. Methods2022191415010.1038/s41592‑021‑01336‑8 34949812
    [Google Scholar]
  105. ArgelaguetR. CuomoA.S.E. StegleO. MarioniJ.C. Computational principles and challenges in single-cell data integration.Nat. Biotechnol.202139101202121510.1038/s41587‑021‑00895‑7 33941931
    [Google Scholar]
  106. FengD FangK ShenC Enhancing streamflow forecast and extracting insights using long-short term memory networks with data integration at continental scales.Water Resour Res2020569e2019WR02679310.1029/2019WR026793
    [Google Scholar]
  107. GaoJ. AlotaibiF.S. IsmailR.I. The model of sugar metabolism and exercise energy expenditure based on fractional linear regression equation.Appl Math Nonlinear Sci20227112313210.2478/amns.2021.2.00026
    [Google Scholar]
  108. MauludD. AbdulazeezA.M. A review on linear regression comprehensive in machine learning.J Appl Sci Technol Trends20201414014710.38094/jastt1457
    [Google Scholar]
  109. KuchlingF. FristonK. GeorgievG. LevinM. Morphogenesis as Bayesian inference: A variational approach to pattern formation and control in complex biological systems.Phys. Life Rev.2020338810810.1016/j.plrev.2019.06.001 31320316
    [Google Scholar]
  110. BuchnerJ. UltraNest–a robust, general purpose Bayesian inference engine.arXiv preprint arXiv2101096042021
    [Google Scholar]
  111. MukanovY. ChenY. BaisholanovS. Estimation of annual average soil loss using the Revised Universal Soil Loss Equation (RUSLE) integrated in a Geographical Information System (GIS) of the Esil River basin (ERB), Kazakhstan.Acta Geophys.201967392193810.1007/s11600‑019‑00288‑0
    [Google Scholar]
  112. VeeranarayanaB. RajuR.P. MulualemW. Integrated remote sensing and GIS-based universal soil loss equation for soil erosion estimation in the Megech River Catchment.Tana Lake Sub-basin, Northwestern Ethiopia.Scientific & Academic Publishing2019
    [Google Scholar]
  113. MosaviA. SalimiM. FaizollahzadehA.S. RabczukT. ShamshirbandS. Varkonyi-KoczyA. State of the art of machine learning models in energy systems, a systematic review.Energies2019127130110.3390/en12071301
    [Google Scholar]
  114. GuptaR. TanwarS. TyagiS. KumarN. Machine learning models for secure data analytics: A taxonomy and threat model.Comput. Commun.202015340644010.1016/j.comcom.2020.02.008
    [Google Scholar]
  115. DesaiS. StahlI. Chamorro-KocM. Global design studio: Advancing cross-disciplinary experiential education during the COVID-19 pandemic.J Des Technol Educ2021264165181
    [Google Scholar]
  116. HubbsG. O’RourkeM. OrzackS.H. The toolbox dialogue initiative: the power of cross-disciplinary practice.CRC Press202010.1201/9780429440014
    [Google Scholar]
  117. NuriusP.S. KempS.P. Individual-level competencies for team collaboration with cross-disciplinary researchers and stakeholders.Strategies for Team Science Success.Springer201917118710.1007/978‑3‑030‑20992‑6_13
    [Google Scholar]
  118. SanchezK.A. KhreisH. The role of cross-disciplinary education, training, and workforce development at the intersection of transportation and health.Advances in Transportation and Health.Elsevier202042345010.1016/B978‑0‑12‑819136‑1.00020‑6
    [Google Scholar]
  119. FeeneyM. GrohnertT. GijselaersW. MartensP. Organizations, learning, and sustainability: A cross-disciplinary review and research agenda.J. Bus. Ethics2023184121723510.1007/s10551‑022‑05072‑7
    [Google Scholar]
  120. RobinsonB. GonnermanC. Enhancing cross-disciplinary science through philosophical dialogue: Evidence of improved group metacognition for effective collaboration.The Toolbox Dialogue Initiative.CRC Press202012714110.1201/9780429440014‑9
    [Google Scholar]
  121. SilverioS.A. GauntlettW. WallaceH. (Re)discovering grounded theory for cross-disciplinary qualitative health research.Myths, Methods, and Messiness: Insights for Qualitative Research Analysis.University of Bath20194159
    [Google Scholar]
  122. KorisR PalmerZ OswalS Empowering crossdisciplinary learning through Online collaboration among students and faculty from Business English, Website Building, and Accessible Design Fields.j Univ Teach Learn Pract202118711234
    [Google Scholar]
  123. JonesK.M.L. Learning analytics and higher education: A proposed model for establishing informed consent mechanisms to promote student privacy and autonomy.Int. J. Educ. Technol. High. Educ.20191612410.1186/s41239‑019‑0155‑0
    [Google Scholar]
  124. LeeH. LeeU. Toward dynamic consent for privacy-aware pervasive health and well-being: A scoping review and research directions.IEEE Pervasive Comput.2022214253210.1109/MPRV.2022.3210747
    [Google Scholar]
  125. KimY. Virtual reality data and its privacy regulatory challenges: A call to move beyond text-based informed consent.Calif. Law Rev.2022110225
    [Google Scholar]
  126. BudowleB. SajantilaA. Revisiting informed consent in forensic genomics in light of current technologies and the times.Int. J. Legal Med.2023137255156510.1007/s00414‑023‑02947‑w 36642749
    [Google Scholar]
  127. PlougT. In Defence of informed consent for health record research - why arguments from ‘easy rescue’, ‘no harm’ and ‘consent bias’ fail.BMC Med. Ethics20202117510.1186/s12910‑020‑00519‑w 32819343
    [Google Scholar]
  128. FabrisA. MessinaS. SilvelloG. SustoG.A. Algorithmic fairness datasets: The story so far.Data Min. Knowl. Discov.20223662074215210.1007/s10618‑022‑00854‑z
    [Google Scholar]
  129. BrallC. Schröder-BäckP. MaeckelbergheE. Ethical aspects of digital health from a justice point of view.Eur. J. Public Health201929S3182210.1093/eurpub/ckz167
    [Google Scholar]
  130. KalkmanS. van DeldenJ. BanerjeeA. TylB. MostertM. van ThielG. Patients’ and public views and attitudes towards the sharing of health data for research: A narrative review of the empirical evidence.J. Med. Ethics202248131310.1136/medethics‑2019‑105651 31719155
    [Google Scholar]
  131. GaletsiP. KatsaliakiK. KumarS. Values, challenges and future directions of big data analytics in healthcare: A systematic review.Soc. Sci. Med.201924111253310.1016/j.socscimed.2019.112533 31585681
    [Google Scholar]
  132. PetersD. VoldK. RobinsonD. CalvoR.A. Responsible AI-two frameworks for ethical design practice.IEEE Trans. Technol. Soc.202011344710.1109/TTS.2020.2974991
    [Google Scholar]
  133. TrocinC. MikalefP. PapamitsiouZ. ConboyK. Responsible AI for digital health: A synthesis and a research agenda.Inf. Syst. Front.20212521392157
    [Google Scholar]
  134. UtzC. DegelingM. FahlS. SchaubF. HolzT. Un) informed consent: Studying GDPR consent notices in the field Proceedings of the 2019 acm sigsac conference on computer and communications security20199739010.1145/3319535.3354212
    [Google Scholar]
  135. HudsonM. GarrisonN.A. SterlingR. Rights, interests and expectations: Indigenous perspectives on unrestricted access to genomic data.Nat. Rev. Genet.202021637738410.1038/s41576‑020‑0228‑x 32251390
    [Google Scholar]
  136. KalkmanS. MostertM. GerlingerC. van DeldenJ.J.M. van ThielG.J.M.W. Responsible data sharing in international health research: A systematic review of principles and norms.BMC Med. Ethics20192012110.1186/s12910‑019‑0359‑9 30922290
    [Google Scholar]
  137. BarbosaS MilanS Do not harm in private chat apps: Ethical issues for research on and with WhatsApp.Westminst Pap Commun Cult201914110.16997/wpcc.313
    [Google Scholar]
/content/journals/cms/10.2174/0126661454279515231225151023
Loading
/content/journals/cms/10.2174/0126661454279515231225151023
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test