Skip to content
2000
Volume 18, Issue 6
  • ISSN: 2666-1454
  • E-ISSN: 2666-1462

Abstract

Since the last few decades, smart hydrogels have become a vibrant research area in biomedical science and engineering. Nowadays, smart hydrogels can be used in drug delivery systems due to their biocompatibility, physicochemical properties, and high stability. External factors like temperature, pH, ionic concentration, light, magnetic fields, electrical fields, and chemicals can alter smart hydrogels' chemical and biological characteristics. Furthermore, there have been sophisticated advancements in polymer science that combine two or more responsive mechanisms to create polymers with multiple responsive properties. In this review article, we discussed the recent advancements in the field of smart hydrogels, their preparation methods, important properties, and multifunctional applications. The FDA approval for clinical purposes is also given for specific commercial applications. Various mathematical models have also been discussed to simulate and optimize the drug release behavior from hydrogels and to provide valuable insight into the drug release profile over time. The latest advancement in the field of stimuli-responsive drug-loaded hydrogels and the contributions of the researchers in this field are also highlighted. Finally, the advantages and disadvantages of smart hydrogels and their future challenges are also discussed.

Loading

Article metrics loading...

/content/journals/cms/10.2174/0126661454282018240223062850
2024-03-11
2025-12-07
Loading full text...

Full text loading...

References

  1. MeratiA.A. HemmatinejadN. ShakeriM. BashariA. Preparation, Classification, and Applications of Smart Hydrogels.Advanced Functional Textiles and Polymers201933736410.1002/9781119605843.ch12
    [Google Scholar]
  2. UllahF. OthmanM.B.H. JavedF. AhmadZ. AkilH.M. Classification, processing and application of hydrogels: A review.Mater. Sci. Eng. C20155741443310.1016/j.msec.2015.07.05326354282
    [Google Scholar]
  3. VaraprasadK. RaghavendraG.M. JayaramuduT. YallapuM.M. SadikuR. A mini review on hydrogels classification and recent developments in miscellaneous applications.Mater. Sci. Eng. C20177995897110.1016/j.msec.2017.05.09628629101
    [Google Scholar]
  4. KaithB.S. SinghA. SharmaA.K. SudD. Hydrogels: Synthesis, classification, properties and potential applications-a brief review.J. Polym. Environ.202129123827384110.1007/s10924‑021‑02184‑5
    [Google Scholar]
  5. KrskoP. LiberaM. Biointeractive hydrogels.Mater. Today2005812364410.1016/S1369‑7021(05)71223‑2
    [Google Scholar]
  6. LiuH. RongL. WangB. Facile fabrication of redox/pH dual stimuli responsive cellulose hydrogel.Carbohydr. Polym.201717629930610.1016/j.carbpol.2017.08.08528927612
    [Google Scholar]
  7. BlancoA. Gonz¨¢lez G, Casanova E, Pirela MaE, Brice?o A. Mathematical modeling of hydrogels swelling based on the finite element method.Appl. Math.20134810
    [Google Scholar]
  8. BisottiF. PizzettiF. StortiG. RossiF. Mathematical modelling of cross-linked polyacrylic-based hydrogels: Physical properties and drug delivery.Drug Deliv. Transl. Res.20221281928194210.1007/s13346‑022‑01129‑235152363
    [Google Scholar]
  9. CaccavoD. An overview on the mathematical modeling of hydrogels’ behavior for drug delivery systems.Int. J. Pharm.201956017519010.1016/j.ijpharm.2019.01.07630763681
    [Google Scholar]
  10. CaccavoD. CasconeS. LambertiG. BarbaA.A. Hydrogels: Experimental characterization and mathematical modelling of their mechanical and diffusive behaviour.Chem. Soc. Rev.20184772357237310.1039/C7CS00638A29504613
    [Google Scholar]
  11. ChatterjeeA.N. YuQ. MooreJ.S. AluruN.R. Mathematical modeling and simulation of dissolvable hydrogels.J. Aerosp. Eng.2003162556410.1061/(ASCE)0893‑1321(2003)16:2(55)
    [Google Scholar]
  12. SinghM. LumpkinJ.A. RosenblattJ. Mathematical modeling of drug release from hydrogel matrices via a diffusion coupled with desorption mechanism.J. Control. Release1994321172510.1016/0168‑3659(94)90221‑6
    [Google Scholar]
  13. VockleyM. Game-changing technologies: 10 promising innovations for healthcare.Biomed. Instrum. Technol.20175196108
    [Google Scholar]
  14. TangS. RichardsonB.M. AnsethK.S. Dynamic covalent hydrogels as biomaterials to mimic the viscoelasticity of soft tissues.Prog. Mater. Sci.202112010073810.1016/j.pmatsci.2020.100738
    [Google Scholar]
  15. MauriE. GiannitelliS.M. TrombettaM. RainerA. Synthesis of nanogels: Current trends and future outlook.Gels2021723610.3390/gels702003633805279
    [Google Scholar]
  16. AnnabiN. TamayolA. UquillasJ.A. 25th anniversary article: Rational design and applications of hydrogels in regenerative medicine.Adv. Mater.20142618512410.1002/adma.20130323324741694
    [Google Scholar]
  17. AkhtarM.F. HanifM. RanjhaN.M. Methods of synthesis of hydrogels: A review.Saudi Pharm. J.201624555455910.1016/j.jsps.2015.03.02227752227
    [Google Scholar]
  18. TsihlisN.D. MurarJ. KapadiaM.R. Isopropylamine NONOate (IPA/NO) moderates neointimal hyperplasia following vascular injury.J. Vasc. Surg.20105151248125910.1016/j.jvs.2009.12.02820223627
    [Google Scholar]
  19. AhmedE.M. Hydrogel: Preparation, characterization, and applications: A review.J. Adv. Res.20156210512110.1016/j.jare.2013.07.00625750745
    [Google Scholar]
  20. HenninkW.E. van NostrumC.F. Novel crosslinking methods to design hydrogels.Adv. Drug Deliv. Rev.2002541133610.1016/S0169‑409X(01)00240‑X11755704
    [Google Scholar]
  21. BillietT. VandenhauteM. SchelfhoutJ. Van VlierbergheS. DubruelP. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering.Biomaterials201233266020604110.1016/j.biomaterials.2012.04.05022681979
    [Google Scholar]
  22. Abdel-AzimA.A.A. FarahatM.S. AttaA.M. Abdel-FattahA.A. Preparation and properties of two-component hydrogels based on 2-acrylamido-2-methylpropane sulphonic acid.Polym. Adv. Technol.19989528228910.1002/(SICI)1099‑1581(199805)9:5<282:AID‑PAT755>3.0.CO;2‑N
    [Google Scholar]
  23. RanganathanN. Joseph BensinghR. Abdul KaderM. NayakS.K. Synthesis and properties of hydrogels prepared by various polymerization reaction systems.Cellulose-Based Superabsorbent Hydrogels. MondalM.I.H. ChamSpringer International Publishing201812510.1007/978‑3‑319‑76573‑0_18‑1
    [Google Scholar]
  24. CarraherC.E. Introduction to Polymer Chemistry.4th edCRC Press201710.1201/9781315369488
    [Google Scholar]
  25. ShinB.M. KimJ.H. ChungD.J. Synthesis of pH-responsive and adhesive super-absorbent hydrogel through bulk polymerization.Macromol. Res.201321558258710.1007/s13233‑013‑1051‑4
    [Google Scholar]
  26. EbdonJ.R. Introduction to polymers.Second EditionLondonR. J. Young and P. A. Lovell Chapman and Hall1992443
    [Google Scholar]
  27. LiuM. LiangR. ZhanF. LiuZ. NiuA. Preparation of superabsorbent slow release nitrogen fertilizer by inverse suspension polymerization.Polym. Int.200756672973710.1002/pi.2196
    [Google Scholar]
  28. EssawyH.A. GhazyM.B.M. El-HaiF.A. MohamedM.F. Superabsorbent hydrogels via graft polymerization of acrylic acid from chitosan-cellulose hybrid and their potential in controlled release of soil nutrients.Int. J. Biol. Macromol.20168914415110.1016/j.ijbiomac.2016.04.07127126169
    [Google Scholar]
  29. TibbittM.W. KloxinA.M. SawickiL.A. AnsethK.S. Mechanical properties and degradation of chain and step-polymerized photodegradable hydrogels.Macromolecules20134672785279210.1021/ma302522x24496435
    [Google Scholar]
  30. JamesH.M. GuthE. Theory of the elastic properties of rubber.J. Chem. Phys.1943111045548110.1063/1.1723785
    [Google Scholar]
  31. MenardK.P. MenardN. Dynamic mechanical analysisEncyclopedia of Analytical Chemistry.2020125
    [Google Scholar]
  32. BucatariuS. FundueanuG. PrisacaruI. Synthesis and characterization of thermosensitive poly(N-isopropylacry lamide-co-hydroxyethylacrylamide) microgels as potential carriers for drug delivery.J. Polym. Res.2014211158010.1007/s10965‑014‑0580‑7
    [Google Scholar]
  33. QiuY. ParkK. Environment-sensitive hydrogels for drug delivery.Adv. Drug Deliv. Rev.200153332133910.1016/S0169‑409X(01)00203‑411744175
    [Google Scholar]
  34. SamchenkoY. UlbergZ. KorotychO. Multipurpose smart hydrogel systems.Adv. Colloid Interface Sci.20111681-224726210.1016/j.cis.2011.06.00521782148
    [Google Scholar]
  35. AkashM.S.H. RehmanK. SunH. ChenS. Assessment of release kinetics, stability and polymer interaction of poloxamer 407-based thermosensitive gel of interleukin-1 receptor antagonist.Pharm. Dev. Technol.201419327828410.3109/10837450.2013.77515823506246
    [Google Scholar]
  36. HoffmanA.S. Hydrogels for biomedical applications.Adv. Drug Deliv. Rev.200254131210.1016/S0169‑409X(01)00239‑311755703
    [Google Scholar]
  37. TibbittM.W. AnsethK.S. Hydrogels as extracellular matrix mimics for 3D cell culture.Biotechnol. Bioeng.2009103465566310.1002/bit.2236119472329
    [Google Scholar]
  38. KloudaL. Thermoresponsive hydrogels in biomedical applications.Eur J Pharm Biopharm201597Pt B3384910.1016/j.ejpb.2015.05.01726614556
    [Google Scholar]
  39. LiL. ScheigerJ.M. LevkinP.A. Design and applications of photoresponsive hydrogels.Adv. Mater.20193126180733310.1002/adma.20180733330848524
    [Google Scholar]
  40. ChrisnandyA. BlondelD. RezakhaniS. BroguiereN. LutolfM.P. Synthetic dynamic hydrogels promote degradation-independent in vitro organogenesis.Nat. Mater.202221447948710.1038/s41563‑021‑01136‑734782747
    [Google Scholar]
  41. WuD. XieX. KadiA.A. ZhangY. Photosensitive peptide hydrogels as smart materials for applications.Chin. Chem. Lett.20182971098110410.1016/j.cclet.2018.04.030
    [Google Scholar]
  42. JiW. WuQ. HanX. Photosensitive hydrogels: From structure, mechanisms, design to bioapplications.Sci. China Life Sci.202063121813182810.1007/s11427‑019‑1710‑833216277
    [Google Scholar]
  43. YangS. Photosensitive hydrogels.Encyclopedia of Microfluidics and Nanofluidics. LiD. Boston, MASpringer US20081643164710.1007/978‑0‑387‑48998‑8_1227
    [Google Scholar]
  44. RizwanM. YahyaR. HassanA. pH sensitive hydrogels in drug delivery: Brief history, properties, swelling, and release mechanism, material selection and applications.Polymers201791213710.3390/polym904013730970818
    [Google Scholar]
  45. SunJ. GuoY. XingR. JiaoT. ZouQ. YanX. Synergistic in vivo photodynamic and photothermal antitumor therapy based on collagen-gold hybrid hydrogels with inclusion of photosensitive drugs.Colloids Surf. A Physicochem. Eng. Asp.201751415516010.1016/j.colsurfa.2016.11.062
    [Google Scholar]
  46. Ter SchiphorstJ. ColemanS. StumpelJ.E. Ben AzouzA. DiamondD. SchenningA.P.H.J. Molecular design of light-responsive hydrogels, for in situ generation of fast and reversible valves for microfluidic applications.Chem. Mater.201527175925593110.1021/acs.chemmater.5b01860
    [Google Scholar]
  47. KimJ.H. LeeT.R. Thermo- and pH-responsive hydrogel-coated gold nanoparticles.Chem. Mater.200416193647365110.1021/cm049764u
    [Google Scholar]
  48. ZhaoY.L. StoddartJ.F. Azobenzene-based light-responsive hydrogel system.Langmuir200925158442844610.1021/la804316u20050041
    [Google Scholar]
  49. HanL. ZhangY. LuX. WangK. WangZ. ZhangH. Polydopamine nanoparticles modulating stimuli-responsive PNIPAM hydrogels with cell/tissue adhesiveness.ACS Appl. Mater. Interfaces2016842290882910010.1021/acsami.6b1104327709887
    [Google Scholar]
  50. WuY. WangK. HuangS. YangC. WangM. Near-infrared light-responsive semiconductor polymer composite hydrogels: Spatial/temporal-controlled release via a photothermal “sponge” effect.ACS Appl. Mater. Interfaces2017915136021361010.1021/acsami.7b0101628304158
    [Google Scholar]
  51. Guiseppi-ElieA. Electroconductive hydrogels: Synthesis, characterization and biomedical applications.Biomaterials201031102701271610.1016/j.biomaterials.2009.12.05220060580
    [Google Scholar]
  52. GongJ.P. NittaT. OsadaY. Electrokinetic modeling of the contractile phenomena of polyelectrolyte gels. One-dimensional capillary model.J. Phys. Chem.199498389583958710.1021/j100089a036
    [Google Scholar]
  53. Kolosnjaj-TabiJ. GibotL. FourquauxI. GolzioM. RolsM.P. Electric field-responsive nanoparticles and electric fields: Physical, chemical, biological mechanisms and therapeutic prospects.Adv. Drug Deliv. Rev.2019138566710.1016/j.addr.2018.10.01730414494
    [Google Scholar]
  54. KoettingM.C. PetersJ.T. SteichenS.D. PeppasN.A. Stimulus-responsive hydrogels: Theory, modern advances, and applications.Mater. Sci. Eng. Rep.20159314910.1016/j.mser.2015.04.00127134415
    [Google Scholar]
  55. ZrínyiM. FehérJ. FilipcseiG. Novel gel actuator containing TiO 2 particles operated under static electric field.Macromolecules200033165751575310.1021/ma000253c
    [Google Scholar]
  56. MehrotraP. Biosensors and their applications – A review.J. Oral Biol. Craniofac. Res.20166215315910.1016/j.jobcr.2015.12.00227195214
    [Google Scholar]
  57. KaushikA. MujawarM. Point of care sensing devices: Better care for everyone.Sensors20181812430310.3390/s1812430330563249
    [Google Scholar]
  58. KaklamaniG. KazaryanD. BowenJ. IacovellaF. AnastasiadisS.H. DeligeorgisG. On the electrical conductivity of alginate hydrogels.Regen. Biomater.20185529330110.1093/rb/rby01930338127
    [Google Scholar]
  59. FrachiniE. PetriD. Magneto-responsive hydrogels: Preparation, characterization, biotechnological and environmental applications.J. Braz. Chem. Soc.201930102010202810.21577/0103‑5053.20190074
    [Google Scholar]
  60. ZhangJ. HuangQ. DuJ. Recent advances in magnetic hydrogels.Polym. Int.201665121365137210.1002/pi.5170
    [Google Scholar]
  61. HuK. SunJ. GuoZ. A novel magnetic hydrogel with aligned magnetic colloidal assemblies showing controllable enhancement of magnetothermal effect in the presence of alternating magnetic field.Adv. Mater.201527152507251410.1002/adma.20140575725753892
    [Google Scholar]
  62. OzayO. EkiciS. BaranY. AktasN. SahinerN. Removal of toxic metal ions with magnetic hydrogels.Water Res.200943174403441110.1016/j.watres.2009.06.05819625066
    [Google Scholar]
  63. MuzzalupoR. TavanoL. RossiC.O. PicciN. RanieriG.A. Novel pH sensitive ferrogels as new approach in cancer treatment: Effect of the magnetic field on swelling and drug delivery.Colloids Surf. B Biointerfaces201513427327810.1016/j.colsurfb.2015.06.06526209777
    [Google Scholar]
  64. KimJ.I. ChunC. KimB. Thermosensitive/magnetic poly(organophosphazene) hydrogel as a long-term magnetic resonance contrast platform.Biomaterials201233121822410.1016/j.biomaterials.2011.09.03321975461
    [Google Scholar]
  65. CoutoD. HongZ. ManoJ. Development of bioactive and biodegradable chitosan-based injectable systems containing bioactive glass nanoparticles.Acta Biomater.20095111512310.1016/j.actbio.2008.08.00618835230
    [Google Scholar]
  66. WangC. LiuH. GaoQ. LiuX. TongZ. Alginate–calcium carbonate porous microparticle hybrid hydrogels with versatile drug loading capabilities and variable mechanical strengths.Carbohydr. Polym.200871347648010.1016/j.carbpol.2007.06.018
    [Google Scholar]
  67. HäntzschelN. ZhangF. EckertF. PichA. WinnikM.A. Poly(N-vinylcaprolactam-co-glycidyl methacrylate) aqueous microgels labeled with fluorescent LaF3:Eu nanoparticles.Langmuir20072321107931080010.1021/la701691g17854211
    [Google Scholar]
  68. LamminenM. WalkerH.W. WeaversL.K. Mechanisms and factors influencing the ultrasonic cleaning of particle-fouled ceramic membranes.J. Membr. Sci.20042371-221322310.1016/j.memsci.2004.02.031
    [Google Scholar]
  69. WangL.V. HuS. Photoacoustic tomography: In vivo imaging from organelles to organs.Science201233560751458146210.1126/science.121621022442475
    [Google Scholar]
  70. HuebschN. KearneyC.J. ZhaoX. Ultrasound-triggered disruption and self-healing of reversibly cross-linked hydrogels for drug delivery and enhanced chemotherapy.Proc. Natl. Acad. Sci. USA2014111279762976710.1073/pnas.140546911124961369
    [Google Scholar]
  71. MercadoK.P. HelgueraM. HockingD.C. DaleckiD. Noninvasive quantitative imaging of collagen microstructure in three-dimensional hydrogels using high-frequency ultrasound.Tissue Eng. Part C Methods201521767168210.1089/ten.tec.2014.052725517512
    [Google Scholar]
  72. KwokC.S. MouradP.D. CrumL.A. RatnerB.D. Self-assembled molecular structures as ultrasonically-responsive barrier membranes for pulsatile drug delivery.J. Biomed. Mater. Res.200157215116410.1002/1097‑4636(200111)57:2<151:AID‑JBM1154>3.0.CO;2‑511526905
    [Google Scholar]
  73. SiY. WangL. WangX. TangN. YuJ. DingB. Ultrahigh‐water‐content, superelastic, and shape‐memory nanofiber‐assembled hydrogels exhibiting pressure‐responsive conductivity.Adv. Mater.20172924170033910.1002/adma.20170033928417597
    [Google Scholar]
  74. SchaedlerT.A. JacobsenA.J. TorrentsA. Ultralight metallic microlattices.Science2011334605896296510.1126/science.121164922096194
    [Google Scholar]
  75. WangX. DingB. SunG. WangM. YuJ. Electro-spinning/netting: A strategy for the fabrication of three-dimensional polymer nano-fiber/nets.Prog. Mater. Sci.20135881173124310.1016/j.pmatsci.2013.05.00132287484
    [Google Scholar]
  76. ChatterjeeS. Chi-leungH.U.I.P. Review of stimuli-responsive polymers in drug delivery and textile application.Molecules20192414254710.3390/molecules2414254731336916
    [Google Scholar]
  77. NinanN. ForgetA. ShastriV.P. VoelckerN.H. BlencoweA. Antibacterial and anti-inflammatory pH-responsive tannic acid-carboxylated agarose composite hydrogels for wound healing.ACS Appl. Mater. Interfaces2016842285112852110.1021/acsami.6b1049127704757
    [Google Scholar]
  78. HebeishA. FaragS. SharafS. ShaheenT.I. Radically new cellulose nanocomposite hydrogels: Temperature and pH responsive characters.Int. J. Biol. Macromol.20158135636110.1016/j.ijbiomac.2015.08.01426275463
    [Google Scholar]
  79. DongY. WangW. VeisehO. Injectable and glucose-responsive hydrogels based on boronic acid–glucose complexation.Langmuir201632348743874710.1021/acs.langmuir.5b0475527455412
    [Google Scholar]
  80. GunasekarS.K. HaghpanahJ.S. MontclareJ.K. Assembly of bioinspired helical protein fibers.Polym. Adv. Technol.200819645446810.1002/pat.1136
    [Google Scholar]
  81. LawleyS.D. YunJ. GambleM.V. HallM.N. ReedM.C. NijhoutH.F. Mathematical modeling of the effects of glutathione on arsenic methylation.Theor. Biol. Med. Model.20141112010.1186/1742‑4682‑11‑2024885596
    [Google Scholar]
  82. LiuL. PeiY. HeC. ChenL. Synthesis of novel thermo- and redox-sensitive polypeptide hydrogels.Polym. Int.201766571271810.1002/pi.5313
    [Google Scholar]
  83. MengF. HenninkW.E. ZhongZ. Reduction-sensitive polymers and bioconjugates for biomedical applications.Biomaterials200930122180219810.1016/j.biomaterials.2009.01.02619200596
    [Google Scholar]
  84. FairbanksB.D. SchwartzM.P. HaleviA.E. NuttelmanC.R. BowmanC.N. AnsethK.S. A versatile synthetic extracellular matrix mimic via thiol‐norbornene photopolymerization.Adv. Mater.200921485005501010.1002/adma.20090180825377720
    [Google Scholar]
  85. DirisalaA. OsadaK. ChenQ. Optimized rod length of polyplex micelles for maximizing transfection efficiency and their performance in systemic gene therapy against stroma-rich pancreatic tumors.Biomaterials201435205359536810.1016/j.biomaterials.2014.03.03724720877
    [Google Scholar]
  86. MiyataK. KakizawaY. NishiyamaN. Block catiomer polyplexes with regulated densities of charge and disulfide cross-linking directed to enhance gene expression.J. Am. Chem. Soc.200412682355236110.1021/ja037966614982439
    [Google Scholar]
  87. Kilic BozR. AydinD. KocakS. GolbaB. SanyalR. SanyalA. Redox-responsive hydrogels for tunable and “on-demand” release of biomacromolecules.Bioconjug. Chem.202233583984710.1021/acs.bioconjchem.2c0009435446015
    [Google Scholar]
  88. DuttaS. SamantaP. DharaD. Temperature, pH and redox responsive cellulose based hydrogels for protein delivery.Int. J. Biol. Macromol.2016879210010.1016/j.ijbiomac.2016.02.04226896728
    [Google Scholar]
  89. KajisaT. SakataT. Glucose-responsive hydrogel electrode for biocompatible glucose transistor.Sci. Technol. Adv. Mater.2017181263310.1080/14686996.2016.125734428179956
    [Google Scholar]
  90. LinG. ChangS. HaoH. Osmotic swelling pressure response of smart hydrogels suitable for chronically implantable glucose sensors.Sens. Actuators B Chem.2010144133233610.1016/j.snb.2009.07.05420161690
    [Google Scholar]
  91. TierneyS. VoldenS. StokkeB.T. Glucose sensors based on a responsive gel incorporated as a Fabry-Perot cavity on a fiber-optic readout platform.Biosens. Bioelectron.20092472034203910.1016/j.bios.2008.10.01419062267
    [Google Scholar]
  92. ZhengW. YangG. ShaoN. CO 2 stimuli-responsive, injectable block copolymer hydrogels cross-linked by discrete organoplatinum(ii) metallacycles via stepwise post-assembly polymerization.J. Am. Chem. Soc.201713939138111382010.1021/jacs.7b0730328885839
    [Google Scholar]
  93. KawamotoK. GrindyS.C. LiuJ. Holten-AndersenN. JohnsonJ.A. Dual role for 1,2,4,5-tetrazines in polymer networks: Combining diels–alder reactions and metal coordination to generate functional supramolecular gels.ACS Macro Lett.20154445846110.1021/acsmacrolett.5b0022135596313
    [Google Scholar]
  94. WangY. ZhongM. ParkJ.V. ZhukhovitskiyA.V. ShiW. JohnsonJ.A. Block co-polymocs by stepwise self-assembly.J. Am. Chem. Soc.201613833107081071510.1021/jacs.6b0671227463766
    [Google Scholar]
  95. ZhengW. ChenL.J. YangG. Construction of smart supramolecular polymeric hydrogels cross-linked by discrete organoplatinum(II) metallacycles via post-assembly polymerization.J. Am. Chem. Soc.2016138144927493710.1021/jacs.6b0108927011050
    [Google Scholar]
  96. YanX. LiS. PollockJ.B. Supramolecular polymers with tunable topologies via hierarchical coordination-driven self-assembly and hydrogen bonding interfaces.Proc. Natl. Acad. Sci. USA201311039155851559010.1073/pnas.130747211024019475
    [Google Scholar]
  97. RoyD. CambreJ.N. SumerlinB.S. Future perspectives and recent advances in stimuli-responsive materials.Prog. Polym. Sci.2010351-227830110.1016/j.progpolymsci.2009.10.008
    [Google Scholar]
  98. GhadialiJ.E. StevensM.M. Enzyme‐responsive nanoparticle systems.Adv. Mater.200820224359436310.1002/adma.200703158
    [Google Scholar]
  99. ChandrawatiR. Enzyme-responsive polymer hydrogels for therapeutic delivery.Exp. Biol. Med.2016241997297910.1177/153537021664718627188515
    [Google Scholar]
  100. SilvaG.A. CzeislerC. NieceK.L. Selective differentiation of neural progenitor cells by high-epitope density nanofibers.Science200430356621352135510.1126/science.109378314739465
    [Google Scholar]
  101. IshiiD. TatsumiD. MatsumotoT. MurataK. HayashiH. YoshitaniH. Investigation of the structure of cellulose in LiCl/DMAc solution and its gelation behavior by small-angle X-ray scattering measurements.Macromol. Biosci.20066429330010.1002/mabi.20050023116565944
    [Google Scholar]
  102. SongH. NiuY. WangZ. ZhangJ. Liquid crystalline phase and gel-sol transitions for concentrated microcrystalline cellulose (MCC)/1-ethyl-3-methylimidazolium acetate (EMIMAc) solutions.Biomacromolecules20111241087109610.1021/bm101426p21361275
    [Google Scholar]
  103. ShenX. ShamshinaJ.L. BertonP. GurauG. RogersR.D. Hydrogels based on cellulose and chitin: Fabrication, properties, and applications.Green Chem.2016181537510.1039/C5GC02396C
    [Google Scholar]
  104. LuZ.R. KopečkováP. KopečekJ. Antigen responsive hydrogels based on polymerizable antibody fab′ fragment.Macromol. Biosci.20033629630010.1002/mabi.200390039
    [Google Scholar]
  105. MiyataT. AsamiN. UragamiT. A reversibly antigen-responsive hydrogel.Nature1999399673876676910.1038/2161910391240
    [Google Scholar]
  106. HirstA.R. EscuderB. MiravetJ.F. SmithD.K. High-tech applications of self-assembling supramolecular nanostructured gel-phase materials: From regenerative medicine to electronic devices.Angew. Chem. Int. Ed.200847428002801810.1002/anie.20080002218825737
    [Google Scholar]
  107. EstroffL.A. HamiltonA.D. Water gelation by small organic molecules.Chem. Rev.200410431201121810.1021/cr030204915008620
    [Google Scholar]
  108. HuangY. MaY. ChenY. Target-responsive DNAzyme cross-linked hydrogel for visual quantitative detection of lead.Anal. Chem.20148622114341143910.1021/ac503540q25340621
    [Google Scholar]
  109. LiuR. HuangY. MaY. Design and synthesis of target-responsive aptamer-cross-linked hydrogel for visual quantitative detection of ochratoxin A.ACS Appl. Mater. Interfaces20157126982699010.1021/acsami.5b0112025771715
    [Google Scholar]
  110. DirisalaA. UchidaS. TockaryT.A. Precise tuning of disulphide crosslinking in mRNA polyplex micelles for optimising extracellular and intracellular nuclease tolerability.J. Drug Target.2019275-667068010.1080/1061186X.2018.155064630499743
    [Google Scholar]
  111. DirisalaA. UchidaS. LiJ. Effective mRNA protection by poly(l ‐ornithine) synergizes with endosomal escape functionality of a charge‐conversion polymer toward maximizing mRNA introduction efficiency.Macromol. Rapid Commun.20224312210075410.1002/marc.20210075435286740
    [Google Scholar]
  112. ZhongR. TalebianS. MendesB.B. Hydrogels for RNA delivery.Nat. Mater.202322781883110.1038/s41563‑023‑01472‑w36941391
    [Google Scholar]
  113. HuY. FanC. Nanocomposite DNA hydrogels emerging as programmable and bioinstructive materials systems.Chem2022861554156610.1016/j.chempr.2022.04.003
    [Google Scholar]
  114. HaraguchiK. Nanocomposite hydrogels.Curr. Opin. Solid State Mater. Sci.2007113-4475410.1016/j.cossms.2008.05.001
    [Google Scholar]
  115. MeenachS.A. AndersonK.W. HiltJ.Z. Hydrogel nanocomposites: Biomedical applications, biocompatibility, and toxicity analysis.Safety of Nanoparticles: From Manufacturing to Medical Applications. WebsterT.J. New York, NYSpringer New York200913115710.1007/978‑0‑387‑78608‑7_7
    [Google Scholar]
  116. SharmaG. ThakurB. NaushadM. Applications of nanocomposite hydrogels for biomedical engineering and environmental protection.Environ. Chem. Lett.201816111314610.1007/s10311‑017‑0671‑x
    [Google Scholar]
  117. IndrisS. HeitjansP. RomanH.E. BundeA. Nanocrystalline versus microcrystalline Li(2)O:B(2)O3 composites: Anomalous ionic conductivities and percolation theory.Phys. Rev. Lett.200084132889289210.1103/PhysRevLett.84.288911018968
    [Google Scholar]
  118. HaraguchiK. TakehisaT. Nanocomposite hydrogels: A unique organic–inorganic network structure with extraordinary mechanical, optical, and swelling/deswelling properties.Advan. Mater.20021416141120141124
    [Google Scholar]
  119. HoT.C. ChangC.C. ChanH.P. Hydrogels: Properties and applications in biomedicine.Molecules2022279290210.3390/molecules2709290235566251
    [Google Scholar]
  120. SlaughterB.V. KhurshidS.S. FisherO.Z. KhademhosseiniA. PeppasN.A. Hydrogels in regenerative medicine.Adv. Mater.20092132-333307332910.1002/adma.20080210620882499
    [Google Scholar]
  121. LeeK.Y. MooneyD.J. Hydrogels for tissue engineering.Chem. Rev.200110171869188010.1021/cr000108x11710233
    [Google Scholar]
  122. FuJ. in het PanhuisM. Hydrogel properties and applications.J. Mater. Chem. B Mater. Biol. Med.20197101523152510.1039/C9TB90023C32254899
    [Google Scholar]
  123. YiB. XuQ. LiuW. An overview of substrate stiffness guided cellular response and its applications in tissue regeneration.Bioact. Mater.2022158210210.1016/j.bioactmat.2021.12.00535386347
    [Google Scholar]
  124. RatnerB.D. HoffmanA.S. SchoenF.J. LemonsJ.E. Biomaterials science: an introduction to materials in medicine.Academic Press2012
    [Google Scholar]
  125. HutmacherD.W. Scaffolds in tissue engineering bone and cartilage.Biomaterials200021242529254310.1016/S0142‑9612(00)00121‑611071603
    [Google Scholar]
  126. MadaghieleM. DemitriC. SanninoA. AmbrosioL. Polymeric hydrogels for burn wound care: Advanced skin wound dressings and regenerative templates.Burns Trauma201424153161
    [Google Scholar]
  127. LiX. SunQ. LiQ. KawazoeN. ChenG. Functional hydrogels with tunable structures and properties for tissue engineering applications.Front Chem.2018649910.3389/fchem.2018.0049930406081
    [Google Scholar]
  128. RenY. FengJ. Skin-inspired multifunctional luminescent hydrogel containing layered rare-earth hydroxide with 3d printability for human motion sensing.ACS Appl. Mater. Interfaces20201266797680510.1021/acsami.9b1737131955579
    [Google Scholar]
  129. PalantökenS. BethkeK. ZivanovicV. KalinkaG. KneippJ. RademannK. Cellulose hydrogels physically crosslinked by glycine: Synthesis, characterization, thermal and mechanical properties.J. Appl. Polym. Sci.202013774838010.1002/app.48380
    [Google Scholar]
  130. ChenY. ZhengK. NiuL. Highly mechanical properties nanocomposite hydrogels with biorenewable lignin nanoparticles.Int. J. Biol. Macromol.201912841442010.1016/j.ijbiomac.2019.01.09930682469
    [Google Scholar]
  131. YaoX. ChenL. JuJ. Superhydrophobic diffusion barriers for hydrogels via confined interfacial modification.Adv. Mater.201628347383738910.1002/adma.20160156827309131
    [Google Scholar]
  132. HuX. TanH. WangX. ChenP. Surface functionalization of hydrogel by thiol-yne click chemistry for drug delivery.Colloids Surf. A Physicochem. Eng. Asp.201648929730410.1016/j.colsurfa.2015.11.007
    [Google Scholar]
  133. GuoY. BaeJ. ZhaoF. YuG. Functional hydrogels for next-generation batteries and supercapacitors.Trends Chem.20191333534810.1016/j.trechm.2019.03.005
    [Google Scholar]
  134. YueY. WangX. HanJ. Effects of nanocellulose on sodium alginate/polyacrylamide hydrogel: Mechanical properties and adsorption-desorption capacities.Carbohydr. Polym.201920628930110.1016/j.carbpol.2018.10.10530553324
    [Google Scholar]
  135. ChenC. LiD. YanoH. AbeK. Insect cuticle-mimetic hydrogels with high mechanical properties achieved via the combination of chitin nanofiber and gelatin.J. Agric. Food Chem.201967195571557810.1021/acs.jafc.9b0098431034225
    [Google Scholar]
  136. WahidF. HuX.H. ChuL.Q. JiaS.R. XieY.Y. ZhongC. Development of bacterial cellulose/chitosan based semi-interpenetrating hydrogels with improved mechanical and antibacterial properties.Int. J. Biol. Macromol.201912238038710.1016/j.ijbiomac.2018.10.10530342151
    [Google Scholar]
  137. LiX. QinH. ZhangX. GuoZ. Triple-network hydrogels with high strength, low friction and self-healing by chemical-physical crosslinking.J. Colloid Interface Sci.201955654955610.1016/j.jcis.2019.08.10031476487
    [Google Scholar]
  138. YanX. YangJ. ChenF. Mechanical properties of gelatin/polyacrylamide/graphene oxide nanocomposite double-network hydrogels.Compos. Sci. Technol.2018163818810.1016/j.compscitech.2018.05.011
    [Google Scholar]
  139. LiS. DongS. XuW. Antibacterial hydrogels.Adv. Sci.201855170052710.1002/advs.20170052729876202
    [Google Scholar]
  140. LuY. MeiY. DrechslerM. BallauffM. Thermosensitive core-shell particles as carriers for ag nanoparticles: Modulating the catalytic activity by a phase transition in networks.Angew. Chem. Int. Ed.200645581381610.1002/anie.20050273116365840
    [Google Scholar]
  141. ChangH.W. LinY.S. TsaiY.D. TsaiM.L. Effects of chitosan characteristics on the physicochemical properties, antibacterial activity, and cytotoxicity of chitosan/2‐glycerophosphate/nanosilver hydrogels.J. Appl. Polym. Sci.2013127116917610.1002/app.37855
    [Google Scholar]
  142. TangH. LuA. LiL. ZhouW. XieZ. ZhangL. Highly antibacterial materials constructed from silver molybdate nanoparticles immobilized in chitin matrix.Chem. Eng. J.201323412413110.1016/j.cej.2013.08.096
    [Google Scholar]
  143. SamantaH.S. RayS.K. Controlled release of tinidazole and theophylline from chitosan based composite hydrogels.Carbohydr. Polym.201410610912010.1016/j.carbpol.2014.01.09724721057
    [Google Scholar]
  144. MorrisonS.J. SpradlingA.C. Stem cells and niches: Mechanisms that promote stem cell maintenance throughout life.Cell2008132459861110.1016/j.cell.2008.01.03818295578
    [Google Scholar]
  145. LoessnerD. StokK.S. LutolfM.P. HutmacherD.W. ClementsJ.A. RizziS.C. Bioengineered 3D platform to explore cell–ECM interactions and drug resistance of epithelial ovarian cancer cells.Biomaterials201031328494850610.1016/j.biomaterials.2010.07.06420709389
    [Google Scholar]
  146. SongA. RaneA.A. ChristmanK.L. Antibacterial and cell-adhesive polypeptide and poly(ethylene glycol) hydrogel as a potential scaffold for wound healing.Acta Biomater.201281415010.1016/j.actbio.2011.10.00422023748
    [Google Scholar]
  147. ZhongS.P. ZhangY.Z. LimC.T. Tissue scaffolds for skin wound healing and dermal reconstruction.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.20102551052510.1002/wnan.10020607703
    [Google Scholar]
  148. LeeJ.Y. ChooJ.E. ParkH.J. Injectable gel with synthetic collagen-binding peptide for enhanced osteogenesis in vitro and in vivo.Biochem. Biophys. Res. Commun.20073571687410.1016/j.bbrc.2007.03.10617418806
    [Google Scholar]
  149. BencherifS.A. SandsR.W. BhattaD. Injectable preformed scaffolds with shape-memory properties.Proc. Natl. Acad. Sci. USA201210948195901959510.1073/pnas.121151610923150549
    [Google Scholar]
  150. WaiteJ.H. AndersenN.H. JewhurstS. SunC. Mussel adhesion: Finding the tricks worth mimicking.J. Adhes.2005813-429731710.1080/00218460590944602
    [Google Scholar]
  151. LiuY. HsuS. Synthesis and biomedical applications of self-healing hydrogels.Front Chem.2018644910.3389/fchem.2018.0044930333970
    [Google Scholar]
  152. KadamS.U. TiwariB.K. O’DonnellC.P. Extraction, structure and biofunctional activities of laminarin from brown algae.Int. J. Food Sci. Technol.2015501243110.1111/ijfs.12692
    [Google Scholar]
  153. AmaralA.J.R. GasparV.M. ManoJ.F. Responsive laminarin-boronic acid self-healing hydrogels for biomedical applications.Polym. J.2020528997100610.1038/s41428‑020‑0348‑3
    [Google Scholar]
  154. MandalA. CleggJ.R. AnselmoA.C. MitragotriS. Hydrogels in the clinic.Bioeng. Transl. Med.202052e1015810.1002/btm2.1015832440563
    [Google Scholar]
  155. PatelG. DalwadiC. Recent patents on stimuli responsive hydrogel drug delivery system.Recent Pat. Drug Deliv. Formul.20137320621510.2174/187221130766613111814160024237032
    [Google Scholar]
/content/journals/cms/10.2174/0126661454282018240223062850
Loading
/content/journals/cms/10.2174/0126661454282018240223062850
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test