Skip to content
2000
Volume 18, Issue 6
  • ISSN: 2666-1454
  • E-ISSN: 2666-1462

Abstract

Metal nanoparticles have been a topic of interest between research scholars for decades now. Since these nanoparticles show tremendous effects against bacterial invasion in the body they are widely in demand. ZnO nanoparticles have emerged as one of the most promising candidates for preventing bacterial invasions within the human body. Owing to their small particulate size and increased surface area, they exhibit excellent antimicrobial characteristics. A number of pathogens have the ability to form biofilms which further increases bacterial activity. Biofilms are complex and resilient bacterial communities that adhere to surfaces and are encased in a protective extracellular matrix. They offer enhanced resistance to antibiotics and the host immune system on bacteria. ZnO nanoparticles have demonstrated excellent anti-biofilm properties, making them promising candidates for the treatment of biofilm-related infections. ZnO nanoparticles have also shown remarkable anti-microbial activity against a wide variety of pathogens. ZnO nanoparticles release zinc ions (Zn2+) when exposed to bacteria which helps in degrading the cellular membrane thus disrupting the bacterial integrity. This review article aims to understand the different aspects of Zinc NPs. Thirteen relevant studies were included, focusing on three distinct preparation methods: polyol synthesis, green synthesis, and precipitation. Each of these methods provides useful insights into the efficient development of ZnO nanoparticles, ensuring their optimal performance and applicability in a variety of scenarios. It also focuses on exploring the antibacterial activity as well as the antibiofilm activity of ZnO.

Loading

Article metrics loading...

/content/journals/cms/10.2174/0126661454277886231222043713
2024-01-26
2025-12-07
Loading full text...

Full text loading...

References

  1. SinghR. LillardJ.W.Jr Nanoparticle-based targeted drug delivery.Exp. Mol. Pathol.200986321522310.1016/j.yexmp.2008.12.004 19186176
    [Google Scholar]
  2. HisatomiT. KubotaJ. DomenK. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting.Chem. Soc. Rev.201443227520753510.1039/C3CS60378D 24413305
    [Google Scholar]
  3. ManshaM. QurashiA. UllahN. BakareF.O. KhanI. YamaniZ.H. Synthesis of In2O3/graphene heterostructure and their hydrogen gas sensing properties.Ceram. Int.2016429114901149510.1016/j.ceramint.2016.04.035
    [Google Scholar]
  4. KhanI. SaeedK. KhanI. Nanoparticles: Properties, applications and toxicities.Arab. J. Chem.201912790893110.1016/j.arabjc.2017.05.011
    [Google Scholar]
  5. DesaiM.P. LabhasetwarV. AmidonG.L. LevyR.J. Gastrointestinal uptake of biodegradable microparticles: Effect of particle size.Pharm. Res.199613121838184510.1023/A:1016085108889 8987081
    [Google Scholar]
  6. WangL. HuC. ShaoL. The antimicrobial activity of nanoparticles: present situation and prospects for the future.Int. J. Nanomedicine2017121227124910.2147/IJN.S121956 28243086
    [Google Scholar]
  7. AderibigbeB. Metal-based nanoparticles for the treatment of infectious diseases.Molecules2017228137010.3390/molecules22081370 28820471
    [Google Scholar]
  8. DakalT.C. KumarA. MajumdarR.S. YadavV. Mechanistic basis of antimicrobial actions of silver nanoparticles.Front. Microbiol.20167183110.3389/fmicb.2016.01831 27899918
    [Google Scholar]
  9. AbbaszadeganA. GhahramaniY. GholamiA. The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative bacteria: A preliminary study.J. Nanomater.2015201511810.1155/2015/720654
    [Google Scholar]
  10. SlavinY.N. AsnisJ. HäfeliU.O. BachH. Metal nanoparticles: Understanding the mechanisms behind antibacterial activity.J. Nanobiotechnology20171516510.1186/s12951‑017‑0308‑z 28974225
    [Google Scholar]
  11. LaraH.H. Ayala-NuñezN.V. Ixtepan-TurrentL. Rodriguez-PadillaC. Mode of antiviral action of silver nanoparticles against HIV-1.J. Nanobiotechnology2010811010.1186/1477‑3155‑8‑1 20145735
    [Google Scholar]
  12. GerberA. BundschuhM. KlingelhoferD. GronebergD.A. Gold nanoparticles: Recent aspects for human toxicology.J. Occup. Med. Toxicol.2013813210.1186/1745‑6673‑8‑32 24330512
    [Google Scholar]
  13. HerS. JaffrayD.A. AllenC. Gold nanoparticles for applications in cancer radiotherapy: Mechanisms and recent advancements.Adv. Drug Deliv. Rev.20171098410110.1016/j.addr.2015.12.012 26712711
    [Google Scholar]
  14. KrólA. PomastowskiP. RafińskaK. Railean-PlugaruV. BuszewskiB. Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism.Adv. Colloid Interface Sci.20172493752
    [Google Scholar]
  15. DarvishiE. KahriziD. ArkanE. Comparison of different properties of zinc oxide nanoparticles synthesized by the green (using Juglans regia L. leaf extract) and chemical methods.J. Mol. Liq.201928611083110.1016/j.molliq.2019.04.108
    [Google Scholar]
  16. VijayakumarS. KrishnakumarC. ArulmozhiP. MahadevanS. ParameswariN. Biosynthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from leaf extract of Glycosmis pentaphylla (Retz.) DC.Microb. Pathog.2018116444810.1016/j.micpath.2018.01.003 29330059
    [Google Scholar]
  17. NomuraK. OhtaH. UedaK. KamiyaT. HiranoM. HosonoH. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor.Science200356231269127210.1126/science.1083212
    [Google Scholar]
  18. NakadaT. HirabayashiY. TokadoT. OhmoriD. MiseT. Novel device structure for Cu(In,Ga)Se2 thin film solar cells using transparent conducting oxide back and front contacts.Sol. Energy200477673974710.1016/j.solener.2004.08.010
    [Google Scholar]
  19. KerliS. AlverU. TanriverdiA. AvarB. Structural and physical properties of boron doped ZnO films prepared by chemical spray pyrolysis method.Crystallogr. Rep.201560694695010.1134/S1063774515060139
    [Google Scholar]
  20. KönenkampR. WordR.C. SchlegelC. Vertical nanowire light-emitting diode.Appl. Phys. Lett.200485246004600610.1063/1.1836873
    [Google Scholar]
  21. Trolier-McKinstryS. MuraltP. Thin film piezoelectrics for MEMS.J. Electroceram.2004121/271710.1023/B:JECR.0000033998.72845.51
    [Google Scholar]
  22. WangZ.L. KongX.Y. DingY. Semiconducting and piezoelectric oxide nanostructures induced by polar surfaces.Adv. Funct. Mater.2004141094395610.1002/adfm.200400180
    [Google Scholar]
  23. DietlT. Ferromagnetic semiconductors.Semicond. Sci. Technol.200217437739210.1088/0268‑1242/17/4/310
    [Google Scholar]
  24. FanZ. LuJ.G. Zinc oxide nanostructures: Synthesis and properties.J. Nanosci. Nanotechnol.20055101561157310.1166/jnn.2005.182 16245516
    [Google Scholar]
  25. KrishnaMS SinghS BatoolM A Review on 2DZnO Devices.Materials Advances2022
    [Google Scholar]
  26. BuzeaC. PachecoI.I. RobbieK. Nanomaterials and nanoparticles: Sources and toxicity.Biointerphases200724MR17MR7110.1116/1.2815690 20419892
    [Google Scholar]
  27. BraynerR. Ferrari-IliouR. BrivoisN. DjediatS. BenedettiM.F. FiévetF. Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium.Nano Lett.20066486687010.1021/nl052326h 16608300
    [Google Scholar]
  28. JonesN. RayB. RanjitK.T. MannaA.C. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms.FEMS Microbiol. Lett.20082791717610.1111/j.1574‑6968.2007.01012.x 18081843
    [Google Scholar]
  29. JalalR. GoharshadiE.K. AbareshiM. MoosaviM. YousefiA. NancarrowP. ZnO nanofluids: Green synthesis, characterization, and antibacterial activity.Mater. Chem. Phys.20101211-219820110.1016/j.matchemphys.2010.01.020
    [Google Scholar]
  30. SeilJ.T. WebsterT.J. Antimicrobial applications of nanotechnology: methods and literature.Int. J. Nanomedicine2012727672781 22745541
    [Google Scholar]
  31. Emami-KarvaniZ. ChehraziP. Antibacterial activity of ZnO nanoparticle on gram-positive and gram-negative bacteria.Afr. J. Microbiol. Res.201151213681373
    [Google Scholar]
  32. PadmavathyN. VijayaraghavanR. Enhanced bioactivity of ZnO nanoparticles-an antimicrobial study.Sci. Technol. Adv. Mater.20089303500410.1088/1468‑6996/9/3/035004 27878001
    [Google Scholar]
  33. RaghupathiK.R. KoodaliR.T. MannaA.C. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles.Langmuir20112774020402810.1021/la104825u 21401066
    [Google Scholar]
  34. ÖzgürÜ. AlivovY.I. LiuC. A comprehensive review of ZnO materials and devices.J. Appl. Phys.200598404130110.1063/1.1992666
    [Google Scholar]
  35. MoezziA. McDonaghA.M. CortieM.B. Zinc oxide particles: Synthesis, properties and applications.Chem. Eng. J.2012185-18612210.1016/j.cej.2012.01.076
    [Google Scholar]
  36. GeorgeS. PokhrelS. XiaT. Use of a rapid cytotoxicity screening approach to engineer a safer zinc oxide nanoparticle through iron doping.ACS Nano201041152910.1021/nn901503q 20043640
    [Google Scholar]
  37. BaiX.D. GaoP.X. WangZ.L. WangE.G. Dual-mode mechanical resonance of individual ZnO nanobelts.Appl. Phys. Lett.200382264806480810.1063/1.1587878
    [Google Scholar]
  38. LvY. LiC. GuoL. Nanostructured stars of ZnO microcrystals with intense stimulated emission.Appl. Phys. Lett.2005871616310310.1063/1.2093933
    [Google Scholar]
  39. LaRocheJ.R. HeoY.W. KangB.S. Fabrication approaches to ZnO nanowire devices.J. Electron. Mater.200534440440810.1007/s11664‑005‑0119‑0
    [Google Scholar]
  40. GuY. KuskovskyI.L. YinM. O’BrienS. NeumarkG.F. Quantum confinement in ZnO nanorods.Appl. Phys. Lett.200485173833383510.1063/1.1811797
    [Google Scholar]
  41. MahamuniP.P. PatilP.M. DhanavadeM.J. Synthesis and characterization of zinc oxide nanoparticles by using polyol chemistry for their antimicrobial and antibiofilm activity.Biochem. Biophys. Rep.201917718010.1016/j.bbrep.2018.11.007 30582010
    [Google Scholar]
  42. Jinous Asgarpanah  KazemivashN. Phytochemistry and pharmacologic properties of Myristica fragrans Hoyutt.: A review.Afr. J. Biotechnol.20121165127871279310.5897/AJB12.1043
    [Google Scholar]
  43. FrancisS.K. JamesB. VarugheseS. NairM.S. Phytochemical investigation on Myristica fragrans stem bark.Nat. Prod. Res.20193381204120810.1080/14786419.2018.1457670 29607669
    [Google Scholar]
  44. BarzinjyA.A. HamadS.M. AbdulrahmanA.F. BiroS.J. GhaforA.A. Biosynthesis, characterization and mechanism of formation of ZnO nanoparticles using Petroselinum crispum leaf extract.Curr. Org. Synth.202017755856610.2174/1570179417666200628140547 32598261
    [Google Scholar]
  45. WeilA.T. Nutmeg as a narcotic.Econ. Bot.196519319421710.1007/BF02914307
    [Google Scholar]
  46. ChiuS. WangT. BelskiM. AbourashedE.A. HPLC-guided isolation, purification and characterization of phenylpropanoid and phenolic constituents of nutmeg kernel.Natural product communications2016114
    [Google Scholar]
  47. PirasA. RosaA. MarongiuB. Extraction and separation of volatile and fixed oils from seeds of Myristica fragrans by supercritical CO2: Chemical composition and cytotoxic activity on Caco-2 cancer cells.J. Food Sci.2012774C448C45310.1111/j.1750‑3841.2012.02618.x 22429024
    [Google Scholar]
  48. JanH. ShahM. UsmanH. Biogenic synthesis and characterization of antimicrobial and antiparasitic zinc oxide (ZnO) nanoparticles using aqueous extracts of the Himalayan Columbine (Aquilegia pubiflora).Front. Mater.2020724910.3389/fmats.2020.00249
    [Google Scholar]
  49. Guilger-CasagrandeM. LimaR. Synthesis of silver nanoparticles mediated by fungi: A review.Front. Bioeng. Biotechnol.2019728710.3389/fbioe.2019.00287 31696113
    [Google Scholar]
  50. SinghP. NandaA. Antimicrobial and antifungal potential of zinc oxide nanoparticles in comparison to conventional zinc oxide particles.J. Chem. Pharm. Res.20135457463
    [Google Scholar]
  51. YuJ. ZhangW. LiY. Synthesis, characterization, antimicrobial activity and mechanism of a novel hydroxyapatite whisker/nano zinc oxide biomaterial.Biomed. Mater.201410101500110.1088/1748‑6041/10/1/015001 25534679
    [Google Scholar]
  52. HappyA. SoumyaM. Venkat KumarS. Phyto-assisted synthesis of zinc oxide nanoparticles using Cassia alata and its antibacterial activity against Escherichia coli.Biochem. Biophys. Rep.20191720821110.1016/j.bbrep.2019.01.002 30723810
    [Google Scholar]
  53. Mohamad SukriS.N.A. ShameliK. Mei-Theng WongM. TeowS.Y. ChewJ. IsmailN.A. Cytotoxicity and antibacterial activities of plant-mediated synthesized zinc oxide (ZnO) nanoparticles using Punica granatum (pomegranate) fruit peels extract.J. Mol. Struct.20191189576510.1016/j.molstruc.2019.04.026
    [Google Scholar]
  54. JayabalanJ. ManiG. KrishnanN. PernabasJ. DevadossJ.M. JangH.T. Green biogenic synthesis of zinc oxide nanoparticles using Pseudomonas putida culture and its In vitro antibacterial and anti-biofilm activity.Biocatal. Agric. Biotechnol.20192110132710.1016/j.bcab.2019.101327
    [Google Scholar]
  55. TiwariV. MishraN. GadaniK. SolankiP.S. ShahN.A. TiwariM. Mechanism of anti-bacterial activity of zinc oxide nanoparticle against carbapenem-resistant Acinetobacter baumannii.Front. Microbiol.20189121810.3389/fmicb.2018.01218 29928271
    [Google Scholar]
  56. BhosaleA. KadamJ. GadeT. SonawaneK. GaradkarK. Efficient photodegradation of methyl orange and bactericidal activity of Ag doped ZnO nanoparticles.J. Indian Chem. Soc.2023100210092010.1016/j.jics.2023.100920
    [Google Scholar]
  57. PushpalathaC. SureshJ. GayathriV.S. Zinc oxide nanoparticles: A review on its applications in dentistry.Front. Bioeng. Biotechnol.20221091799010.3389/fbioe.2022.917990 35662838
    [Google Scholar]
  58. MendesC.R. DilarriG. ForsanC.F. Antibacterial action and target mechanisms of zinc oxide nanoparticles against bacterial pathogens.Sci. Rep.2022121265810.1038/s41598‑022‑06657‑y 35173244
    [Google Scholar]
  59. GangulyS. MargelS. Superhydrophobic nanoscale materials for surface coatings.Polymer-Based Nanoscale Materials for Surface Coatings.Elsevier202347950010.1016/B978‑0‑32‑390778‑1.00029‑3
    [Google Scholar]
  60. IslamF. ShohagS. UddinM.J. Exploring the journey of zinc oxide nanoparticles (ZnO-NPs) toward biomedical applications.Materials2022156216010.3390/ma15062160 35329610
    [Google Scholar]
  61. AlhujailyM. AlbukhatyS. YusufM. Recent advances in plant-mediated zinc oxide nanoparticles with their significant biomedical properties.Bioengineering202291054110.3390/bioengineering9100541 36290509
    [Google Scholar]
  62. MandalA.K. KatuwalS. TetteyF. Current research on zinc oxide nanoparticles: Synthesis, characterization, and biomedical applications.Nanomaterials20221217306610.3390/nano12173066 36080103
    [Google Scholar]
  63. HarrisonJ.J. CeriH. StremickC.A. TurnerR.J. Biofilm susceptibility to metal toxicity.Environ. Microbiol.20046121220122710.1111/j.1462‑2920.2004.00656.x 15560820
    [Google Scholar]
  64. LemireJ.A. HarrisonJ.J. TurnerR.J. Antimicrobial activity of metals: Mechanisms, molecular targets and applications.Nat. Rev. Microbiol.201311637138410.1038/nrmicro3028 23669886
    [Google Scholar]
  65. AndreiniC. BanciL. BertiniI. RosatoA. Zinc through the three domains of life.J. Proteome Res.20065113173317810.1021/pr0603699 17081069
    [Google Scholar]
  66. OngC.Y. WalkerM.J. McEwanA.G. Zinc disrupts central carbon metabolism and capsule biosynthesis in Streptococcus pyogenes.Sci. Rep.2015511079910.1038/srep10799 26028191
    [Google Scholar]
  67. MillsD.A. SchmidtB. HiserC. WestleyE. Ferguson-MillerS. Membrane potential-controlled inhibition of cytochrome c oxidase by zinc.J. Biol. Chem.200227717148941490110.1074/jbc.M111922200 11832490
    [Google Scholar]
  68. HoslerJ.P. Ferguson-MillerS. MillsD.A. Energy transduction: Proton transfer through the respiratory complexes.Annu. Rev. Biochem.200675116518710.1146/annurev.biochem.75.062003.101730 16756489
    [Google Scholar]
  69. PasquetJ. ChevalierY. PelletierJ. CouvalE. BouvierD. BolzingerM.A. The contribution of zinc ions to the antimicrobial activity of zinc oxide.Colloids Surf. A Physicochem. Eng. Asp.201445726327410.1016/j.colsurfa.2014.05.057
    [Google Scholar]
  70. SirelkhatimA. MahmudS. SeeniA. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism.Nano-Micro Lett.20157321924210.1007/s40820‑015‑0040‑x 30464967
    [Google Scholar]
  71. PatiR. MehtaR.K. MohantyS. Topical application of zinc oxide nanoparticles reduces bacterial skin infection in mice and exhibits antibacterial activity by inducing oxidative stress response and cell membrane disintegration in macrophages.Nanomedicine20141061195120810.1016/j.nano.2014.02.012 24607937
    [Google Scholar]
  72. LeeJ.H. KimY.G. ChoM.H. LeeJ. ZnO nanoparticles inhibit Pseudomonas aeruginosa biofilm formation and virulence factor production.Microbiol. Res.20141691288889610.1016/j.micres.2014.05.005 24958247
    [Google Scholar]
  73. LeeL.J. BarrettJ.A. PooleR.K. Genome-wide transcriptional response of chemostat-cultured Escherichia coli to zinc.J. Bacteriol.200518731124113410.1128/JB.187.3.1124‑1134.2005 15659689
    [Google Scholar]
  74. DuttaR.K. NenavathuB.P. GangishettyM.K. ReddyA.V.R. Studies on antibacterial activity of ZnO nanoparticles by ROS induced lipid peroxidation.Colloids Surf. B Biointerfaces20129414315010.1016/j.colsurfb.2012.01.046 22348987
    [Google Scholar]
  75. BraggP.D. RainnieD.J. The effect of silver ions on the respiratory chain of Escherichia coli.Can. J. Microbiol.197420688388910.1139/m74‑135 4151872
    [Google Scholar]
  76. ParkH.J. KimJ.Y. KimJ. Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity.Water Res.20094341027103210.1016/j.watres.2008.12.002 19073336
    [Google Scholar]
  77. LiauS.Y. ReadD.C. PughW.J. FurrJ.R. RussellA.D. Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterialaction of silver ions.Lett. Appl. Microbiol.199725427928310.1046/j.1472‑765X.1997.00219.x
    [Google Scholar]
  78. LokC.N. HoC.M. ChenR. Silver nanoparticles: Partial oxidation and antibacterial activities.J. Biol. Inorg. Chem.200712452753410.1007/s00775‑007‑0208‑z 17353996
    [Google Scholar]
  79. RussellA.D. HugoW.B. Antimicrobial activity and action of silver.Prog. Med. Chem.19943135137010.1016/S0079‑6468(08)70024‑9 8029478
    [Google Scholar]
  80. JungW.K. KooH.C. KimK.W. ShinS. KimS.H. ParkY.H. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli.Appl. Environ. Microbiol.20087472171217810.1128/AEM.02001‑07 18245232
    [Google Scholar]
  81. LokC.N. HoC.M. ChenR. Proteomic analysis of the mode of antibacterial action of silver nanoparticles.J. Proteome Res.20065491692410.1021/pr0504079 16602699
    [Google Scholar]
  82. FengQ.L. WuJ. ChenG.Q. CuiF.Z. KimT.N. KimJ.O. A mechanistic study of the antibacterial effect of silver ions onEscherichia coli andStaphylococcus aureus.J. Biomed. Mater. Res.200052466266810.1002/1097‑4636(20001215)52:4<662:AID‑JBM10>3.0.CO;2‑3 11033548
    [Google Scholar]
  83. ClementJ.L. JarrettP.S. Antibacterial silver.Met. Based Drugs199415-646748210.1155/MBD.1994.467 18476264
    [Google Scholar]
  84. RosenbergM. VisnapuuM. VijaH. Selective antibiofilm properties and biocompatibility of nano-ZnO and nano-ZnO/Ag coated surfaces.Sci. Rep.20201011347810.1038/s41598‑020‑70169‑w 32778787
    [Google Scholar]
  85. ZhangY. NayakT. HongH. CaiW. Biomedical applications of zinc oxide nanomaterials.Curr. Mol. Med.201313101633164510.2174/1566524013666131111130058 24206130
    [Google Scholar]
  86. JokarM. PedersenG.A. LoeschnerK. Six open questions about the migration of engineered nano-objects from polymer-based food-contact materials: A review.Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess.201734343445010.1080/19440049.2016.1271462 27998244
    [Google Scholar]
  87. LiuJ. SunL. LiG. HuJ. HeQ. Ultrasensitive detection of dopamine via electrochemical route on spindle-like α-Fe2O3 Mesocrystals/rGO modified GCE.Mater. Res. Bull.202113311105010.1016/j.materresbull.2020.111050
    [Google Scholar]
  88. YangC. LiuX. LiuJ. Long-lasting photocatalytic activity of trace phosphorus-doped g-C3N4/SMSO and its application in antibacterial ceramics.Ecotoxicol. Environ. Saf.202224211395110.1016/j.ecoenv.2022.113951 35999766
    [Google Scholar]
  89. KimI. ViswanathanK. KasiG. ThanakkasaraneeS. SadeghiK. SeoJ. ZnO nanostructures in active antibacterial food packaging: Preparation methods, antimicrobial mechanisms, safety issues, future prospects, and challenges.Food Rev. Int.202238453756510.1080/87559129.2020.1737709
    [Google Scholar]
  90. UmavathiS. RamyaM. PadmapriyaC. GopinathK. Green synthesis of zinc oxide nanoparticle using Justicia procumbense leaf extract and their application as an antimicrobial agent.J Biol Active Prod Nat202010215316410.1080/22311866.2020.1768899
    [Google Scholar]
  91. SeleimanM.F. Al-SelweyW.A. IbrahimA.A. ShadyM. AlsadonA.A. Foliar applications of ZnO and SiO2 nanoparticles mitigate water deficit and enhance potato yield and quality traits.Agronomy202313246610.3390/agronomy13020466
    [Google Scholar]
  92. WuB. XiaoL. ZhangM. Facile synthesis of dendritic-like CeO2/rGO composite and application for detection of uric acid and tryptophan simultaneously.J. Solid State Chem.202129612202310.1016/j.jssc.2021.122023
    [Google Scholar]
  93. ZhangS. LingP. ChenY. LiuJ. YangC. 2D/2D porous Co3O4/rGO nanosheets act as an electrochemical sensor for voltammetric tryptophan detection.Diamond Related Materials202313510981110.1016/j.diamond.2023.109811
    [Google Scholar]
  94. PredaM.D. PopaM.L. NeacșuI.A. GrumezescuA.M. GinghinăO. Antimicrobial clothing based on electrospun fibers with zno nanoparticles.Int. J. Mol. Sci.2023242162910.3390/ijms24021629 36675140
    [Google Scholar]
  95. ObasiH.C. IjazK. AkhtarH. Fabrication of antimicrobial electrospun mats using polyvinyl alcohol–zinc oxide blends.Polym. Bull.20238032681269510.1007/s00289‑022‑04164‑8
    [Google Scholar]
  96. LiS. YinJ. XuL. Batch fabrication and characterization of ZnO/PLGA/PCL nanofiber membranes for antibacterial materials.Fibers Polym.20222351225123410.1007/s12221‑022‑4602‑5
    [Google Scholar]
  97. MalhotraP. MinochaN. PandeyP. KaushikD. VashistN. A review on history, chemical constituents, phytochemistry, pharmacological activities, and recent patents of valerian.Nat. Prod. J.2024142e18072321882210.2174/2210315514666230718100526
    [Google Scholar]
  98. BansalN. RaoK. YadavN. MinochaN. Biodegradable polymeric microspheres as drug carriers for anti-microbial agent.Curr. Drug Ther.2024191495910.2174/1574885518666230530095329
    [Google Scholar]
  99. PandeyP. PurohitD. SharmaS. Nanocrystals: A deep insight into formulation aspects, stabilization strategies, and biomedical applications.Recent Pat. Nanotechnol.202317430732610.2174/1872210516666220523120313 35616680
    [Google Scholar]
  100. MinochaN. PandeyP. SharmaN. SainiS. Development of wheatgrass (Triticum aestivum) extract loaded solid lipid nanoparticles using central composite design and its characterization- its in-vitro anti-cancer activity.Curr. Nanomater.20249433935410.2174/0124054615266447231107070012
    [Google Scholar]
  101. MeenakshiAttri. AshaRaghav. KomalRao. ParijatPandey. NehaMinocha. A review on nanosponges: An idiosyncratic approach for delivery of proactive molecules.Curr. Nanomater.2023819320810.2174/2405461508666230726163944
    [Google Scholar]
  102. MinochaN. SharmaN. VermaR. KaushikD. PandeyP. Solid lipid nanoparticles: Peculiar strategy to deliver bio-proactive molecules.Recent Pat. Nanotechnol.202317322824210.2174/1872210516666220317143351 35301957
    [Google Scholar]
  103. SinghA. PatelA. ChaudharyH. YadavK. MinochaN. Nanotheranostics: The fabrication of theranostics with nanoparticles and their application to treat the neurological disorders.Recent Pat. Nanotechnol.2023 37464820
    [Google Scholar]
  104. MinochaN. KumarV. Nanostructure system: Liposome: A bioactive carrier in drug delivery systems.Mater. Today Proc.20226961461910.1016/j.matpr.2022.09.494
    [Google Scholar]
  105. KumarV. MinochaN. GargV. DurejaH. Nanostructured materials used in drug delivery.Mater. Today Proc.20226917418010.1016/j.matpr.2022.08.306
    [Google Scholar]
  106. KaushikD. PandeyP. MinochaN. Emulgel: An emerging approach towards effective topical drug delivery.Drug Deliv. Lett.202212422724210.2174/2210303112666220818115231
    [Google Scholar]
/content/journals/cms/10.2174/0126661454277886231222043713
Loading
/content/journals/cms/10.2174/0126661454277886231222043713
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test