Skip to content
2000
Volume 25, Issue 4
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

Objective

To explore the effect of nuclear factor erythroid 2-related factor 2 (Nrf 2) on microglial inflammatory response and proliferation after spinal cord injury (SCI) through the glyceraldehyde phosphate dehydrogenase (GAPDH) / Seven in absentia homolog 1 (Siah 1) signaling pathway.

Methods

Human microglia HMC3 was induced by lipopolysaccharide (LPS) to establish a SCI cell model. Microglia morphology after LPS stimulation was observed by transmission electron microscope (TEM), and cellular Nrf2, GAPDH/Siah1 pathway expression and cell viability were determined. Subsequently, the Nrf2 overexpression plasmid was transfected into microglia to observe changes in cell viability and GAPDH/Siah1 pathway expression.

Results

Microglia, mostly amoeba-like, were found to have enlarged cell bodies after LPS stimulation, with an increased number of cell branches, highly expressed Nrf2, GAPDH and Siah1, and decreased cell viability (<0.05). Up-regulating Nrf2 inhibited the GAPDH/Siah1 axis, decreased inflammatory responses, and enhanced activity in post-SCI microglia (<0.05).

Conclusion

Up-regulating Nrf2 expression can reverse the inflammatory reaction of microglia after LPS stimulation and enhance their activity by inhibiting the GAPDH/ Siah1 axis.

© 2025 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240280178231218093609
2024-01-10
2025-10-01
Loading full text...

Full text loading...

/deliver/fulltext/cmm/25/4/CMM-25-4-11.html?itemId=/content/journals/cmm/10.2174/0115665240280178231218093609&mimeType=html&fmt=ahah

References

  1. AnjumA. YazidM.D. FauziD.M. Spinal cord injury: Pathophysiology, multimolecular interactions, and underlying recovery mechanisms.Int. J. Mol. Sci.20202120753310.3390/ijms21207533 33066029
    [Google Scholar]
  2. EliI. LernerD.P. GhogawalaZ. Acute traumatic spinal cord injury.Neurol. Clin.202139247148810.1016/j.ncl.2021.02.004 33896529
    [Google Scholar]
  3. ChayW. KirshblumS. Predicting outcomes after spinal cord injury.Phys. Med. Rehabil. Clin. N. Am.202031333134310.1016/j.pmr.2020.03.003 32624098
    [Google Scholar]
  4. KarsyM. HawrylukG. Modern medical management of spinal cord injury.Curr. Neurol. Neurosci. Rep.20191996510.1007/s11910‑019‑0984‑1 31363857
    [Google Scholar]
  5. QuadriS.A. FarooquiM. IkramA. Recent update on basic mechanisms of spinal cord injury.Neurosurg. Rev.202043242544110.1007/s10143‑018‑1008‑3 29998371
    [Google Scholar]
  6. BellezzaI. GiambancoI. MinelliA. DonatoR. Nrf2-Keap1 signaling in oxidative and reductive stress.Biochim. Biophys. Acta Mol. Cell Res.20181865572173310.1016/j.bbamcr.2018.02.010 29499228
    [Google Scholar]
  7. HeF. RuX. WenT. NRF2, a transcription factor for stress response and beyond.Int. J. Mol. Sci.20202113477710.3390/ijms21134777 32640524
    [Google Scholar]
  8. TonelliC. ChioI.I.C. TuvesonD.A. Transcriptional regulation by Nrf2.Antioxid. Redox Signal.201829171727174510.1089/ars.2017.7342 28899199
    [Google Scholar]
  9. KobayashiE.H. SuzukiT. FunayamaR. Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription.Nat. Commun.2016711162410.1038/ncomms11624 27211851
    [Google Scholar]
  10. XiaoS. ZhangY. LiuZ. Alpinetin inhibits neuroinflammation and neuronal apoptosis via targeting the JAK2/STAT3 signaling pathway in spinal cord injury.CNS Neurosci. Ther.20232941094110810.1111/cns.14085 36627822
    [Google Scholar]
  11. VenkateshK. GhoshS.K. MullickM. ManivasagamG. SenD. Spinal cord injury: Pathophysiology, treatment strategies, associated challenges, and future implications.Cell Tissue Res.2019377212515110.1007/s00441‑019‑03039‑1 31065801
    [Google Scholar]
  12. ZengC.W. Multipotent mesenchymal stem cell-based therapies for spinal cord injury: Current progress and future prospects.Biology202312565310.3390/biology12050653 37237467
    [Google Scholar]
  13. OngB. WilsonJ.R. HenzelM.K. Management of the patient with chronic spinal cord injury.Med. Clin. North Am.2020104226327810.1016/j.mcna.2019.10.006 32035568
    [Google Scholar]
  14. HeF. AntonucciL. KarinM. NRF2 as a regulator of cell metabolism and inflammation in cancer.Carcinogenesis202041440541610.1093/carcin/bgaa039 32347301
    [Google Scholar]
  15. SajadimajdS. KhazaeiM. Oxidative stress and cancer: The role of Nrf2.Curr. Cancer Drug Targets201818653855710.2174/1568009617666171002144228 28969555
    [Google Scholar]
  16. TaguchiK. YamamotoM. The KEAP1–NRF2 system in cancer.Front. Oncol.201778510.3389/fonc.2017.00085 28523248
    [Google Scholar]
  17. SchmidlinC.J. ShakyaA. DodsonM. ChapmanE. ZhangD.D. The intricacies of NRF2 regulation in cancer.Semin. Cancer Biol.20217611011910.1016/j.semcancer.2021.05.016 34020028
    [Google Scholar]
  18. LiuQ. GaoY. CiX. Role of Nrf2 and its activators in respiratory diseases.Oxid. Med. Cell. Longev.2019201911710.1155/2019/7090534 30728889
    [Google Scholar]
  19. JaramilloM.C. ZhangD.D. The emerging role of the Nrf2-Keap1 signaling pathway in cancer.Genes Dev.201327202179219110.1101/gad.225680.113 24142871
    [Google Scholar]
  20. BuendiaI. MichalskaP. NavarroE. GameiroI. EgeaJ. LeónR. Nrf2–ARE pathway: An emerging target against oxidative stress and neuroinflammation in neurodegenerative diseases.Pharmacol. Ther.20161578410410.1016/j.pharmthera.2015.11.003 26617217
    [Google Scholar]
  21. ZhangZ. QuJ. ZhengC. Nrf2 antioxidant pathway suppresses Numb-mediated epithelial-mesenchymal transition during pulmonary fibrosis.Cell Death Dis.2018928310.1038/s41419‑017‑0198‑x 29362432
    [Google Scholar]
  22. HuoJ. ZhuX.L. MaR. DongH.L. SuB.X. GAPDH/Siah1 cascade is involved in traumatic spinal cord injury and could be attenuated by sivelestat sodium.Neuroscience201633017118010.1016/j.neuroscience.2016.05.054 27256506
    [Google Scholar]
  23. IqbalI.K. BajeliS. SahuS. BhatS.A. KumarA. Hydrogen sulfide-induced GAPDH sulfhydration disrupts the CCAR2-SIRT1 interaction to initiate autophagy.Autophagy202117113511352910.1080/15548627.2021.1876342 33459133
    [Google Scholar]
  24. LeeS.B. KimC.K. LeeK.H. AhnJ.Y. S-nitrosylation of B23/nucleophosmin by GAPDH protects cells from the SIAH1–GAPDH death cascade.J. Cell Biol.20121991657610.1083/jcb.201205015 23027902
    [Google Scholar]
  25. SuarezS. McCollumG.W. JayagopalA. PennJ.S. High glucose-induced retinal pericyte apoptosis depends on association of GAPDH and Siah1.J. Biol. Chem.201529047283112832010.1074/jbc.M115.682385 26438826
    [Google Scholar]
  26. TristanC.A. RamosA. ShahaniN. Role of apoptosis signal-regulating kinase 1 (ASK1) as an activator of the GAPDH-Siah1 stress-signaling cascade.J. Biol. Chem.20152901566410.1074/jbc.M114.596205 25391652
    [Google Scholar]
  27. SuB.X. ChenX. HuoJ. GuoS.Y. MaR. LiuY.W. The synthetic cannabinoid WIN55212-2 ameliorates traumatic spinal cord injury via inhibition of GAPDH/Siah1 in a CB2-receptor dependent manner.Brain Res.20171671859210.1016/j.brainres.2017.06.020 28716633
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240280178231218093609
Loading
/content/journals/cmm/10.2174/0115665240280178231218093609
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): GAPDH/Siah1; inflammatory reactions; microglia; Nrf2; signaling pathways; spinal cord injury
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test