Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background

Gynecological assessment of single females in some countries, where transvaginal ultrasound can not be performed, presents a challenge. This study proposed using computer-assisted analysis (ImageJ software) to assess its feasibility for endometrial analysis and consequently enhance the diagnostic value of transabdominal ultrasound.

Materials and Methods

This pilot normative cohort study was conducted among 20 single healthy volunteers recruited at Princess Nourah University (PNU) ultrasound lab from November 2022 to April 2023. Participants were followed throughout their entire menstrual cycle and underwent a transabdominal ultrasound in the 4 menstrual phases. Sonographs were analyzed using the ImageJ program, and the data were analyzed with SPSS software.

Results

The mean age of the participants was 21 years (± 0.9), and the average menstrual cycle length was 29.65 days (±2.18). The endometrium measured 0.33 cm (±0.137), 0.63 cm (±0.172), 0.89 cm (±0.167), and 1.06 cm (±0.19) in the menstrual, early proliferative, late proliferative, and secretory phases, respectively. At the same time, the intensity score was 96.735 (±26.24), 117.4 (±27.8), 145.37 (±30.0137), and 157.3 (±21.3) in these phases. Endometrial thickness also showed a moderate positive correlation with the intensity score (r=0.545, p=0.000).

Discussion

These findings, which demonstrate a correlation between the intensity score and endometrial thickness, underscore the importance of this study in providing a basis for using ImageJ software to analyze transabdominal ultrasound.

Conclusion

This pilot study generated preliminary reference values for endometrial thickness and intensity score using transabdominal ultrasound. It also demonstrated a correlation between these measurements, underscoring the potential utility of ImageJ analysis.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056434787251008053407
2025-10-14
2026-02-02
Loading full text...

Full text loading...

/deliver/fulltext/cmir/21/1/CMIR-21-E15734056434787.html?itemId=/content/journals/cmir/10.2174/0115734056434787251008053407&mimeType=html&fmt=ahah

References

  1. CritchleyH.O.D. MaybinJ.A. ArmstrongG.M. WilliamsA.R.W. Physiology of the endometrium and regulation of menstruation.Physiological ReviewsAmerican Physiological Society20201149117910.1152/physrev.00031.2019
    [Google Scholar]
  2. JainV. ChodankarR.R. MaybinJ.A. CritchleyH.O.D. Uterine bleeding: How understanding endometrial physiology underpins menstrual health.Nat Rev Endocrinol20221829030810.1038/s41574‑022‑00656‑3
    [Google Scholar]
  3. BordesA. BoryA.M. BenchaïbM. RudigozR.C. SalleB. Reproducibility of transvaginal three‐dimensional endometrial volume measurements with virtual organ computer‐aided analysis (VOCAL) during ovarian stimulation.Ultrasound Obstet. Gynecol.2002191768010.1046/j.0960‑7692.2001.00550.x11851973
    [Google Scholar]
  4. EpsteinE. ValentinL. Intraobserver and interobserver reproducibility of ultrasound measurements of endometrial thickness in postmenopausal women.Ultrasound Obstet. Gynecol.200220548649110.1046/j.1469‑0705.2002.00841.x12423487
    [Google Scholar]
  5. CreininM.D. HarwoodB. GuidoR.S. FoxM.C. ZhangJ. NICHD Management of Early Pregnancy Failure Trial Endometrial thickness after misoprostol use for early pregnancy failure.Int. J. Gynaecol. Obstet.2004861222610.1016/j.ijgo.2004.02.00415207665
    [Google Scholar]
  6. HassanM. AlnafaH. AlsofyanN. AlsulimiR. AlsllalS. AbaalkhailN. AlzurayrM. AlamrH. ElmahdiT. AldahesA. WanasiM. HawesaH. Ultrasonographic Assessment of uterine measurements and endometrial thickness among healthy Saudi females sample.Int. J. Womens Health20251717677310.2147/IJWH.S48756439835183
    [Google Scholar]
  7. ChowdhuryL. Ultrasonography in gynecology.J. Obstet. Gynecol. India2015651656610.1007/s13224‑014‑0662‑9
    [Google Scholar]
  8. EpsteinE. Van HolsbekeC. MasciliniF. MÅsbäckA. KannistoP. AmeyeL. FischerovaD. ZannoniG. VelloneV. TimmermanD. TestaA.C. Gray‐scale and color Doppler ultrasound characteristics of endometrial cancer in relation to stage, grade and tumor size.Ultrasound Obstet. Gynecol.201138558659310.1002/uog.903821547974
    [Google Scholar]
  9. KecksteinJ. HoopmannM. MerzE. GrabD. WeichertJ. Helmy-BaderS. Expert opinion on the use of transvaginal sonography for presurgical staging and classification of endometriosis.Arch Gynecol Obstet2023307151910.1007/s00404‑022‑06766‑z36367580
    [Google Scholar]
  10. VignatoJ. InmanM. PatsaisM. ConleyV. Computer-assisted qualitative data analysis software, phenomenology, and Colaizzi’s Method.West. J. Nurs. Res.202244121117112310.1177/0193945921103033534238074
    [Google Scholar]
  11. ChouS.Y. ChenC.Y. SuH.W. HsuM.I. LiangS.R. HsuC.S. Ultrasonographic quantification of the endometrium during the menstrual cycle using computer-assisted analysis.Taiwan. J. Obstet. Gynecol.201150329730010.1016/j.tjog.2011.01.01622030042
    [Google Scholar]
  12. WilsonW.D. ValetA.S. AndreottiR.F. Green-JarvisB. LyshchikA. FleischerA.C. Sonographic quantification of ovarian tumor vascularity.J. Ultrasound Med.200625121577158110.7863/jum.2006.25.12.157717121953
    [Google Scholar]
  13. GolematiS. YanniA. TsiaparasN.N. LechareasS. VlachosI.S. CokkinosD.D. KrokidisM. NikitaK.S. PerreaD. ChatziioannouA. CurveletTransform–Based Texture Analysis of Carotid B-mode Ultrasound Images in Asymptomatic Men With Moderate and Severe Stenoses: A Preliminary Clinical Study.Ultrasound Med. Biol.2022481789010.1016/j.ultrasmedbio.2021.09.00534666918
    [Google Scholar]
  14. AIUMPractice parameter for the performance of duplex sonography of native renal vessels.J Ultrasound Med2020May395E24E2910.1002/jum.1526032163616
    [Google Scholar]
  15. SchneiderC.A. RasbandW.S. EliceiriK.W. NIH Image to ImageJ: 25 years of image analysis.Nat. Methods20129767167510.1038/nmeth.208922930834
    [Google Scholar]
  16. Principles of scientific imaging.2025Available from: https://imagej.net/imaging/principles
  17. SchroederA.B. DobsonE.T.A. RuedenC.T. TomancakP. JugF. EliceiriK.W. The ImageJ ecosystem: Open‐source software for image visualization, processing, and analysis.Protein Sci.202130123424910.1002/pro.399333166005
    [Google Scholar]
  18. NanesB.A. Slide Set: Reproducible image analysis and batch processing with ImageJ.Biotechniques201559526927810.2144/00011435126554504
    [Google Scholar]
  19. JokubkieneL. SladkeviciusP. RovasL. ValentinL. Assessment of changes in endometrial and subendometrial volume and vascularity during the normal menstrual cycle using three‐dimensional power Doppler ultrasound.Ultrasound Obstet. Gynecol.200627667267910.1002/uog.274216676367
    [Google Scholar]
  20. AlcázarJ.L. MercéL.T. ManeroM.G. BauS. López-GarcíaG. Endometrial volume and vascularity measurements by transvaginal 3-dimensional ultrasonography and power Doppler angiography in stimulated and tumoral endometria: An interobserver reproducibility study.J. Ultrasound Med.20052481091109810.7863/jum.2005.24.8.109116040824
    [Google Scholar]
  21. SharmaR. WeerakkodyY. Endometrial thickness.2010Available from: https://radiopaedia.org/articles/endometrial-thickness
/content/journals/cmir/10.2174/0115734056434787251008053407
Loading
/content/journals/cmir/10.2174/0115734056434787251008053407
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test