Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Introduction

Early detection of gastric cancer remains challenging for many of the current imaging techniques. Recent advancements in reduced field-of-view (rFOV) diffusion-weighted imaging (DWI) have shown promise in improving the visualization of small anatomical structures. This study aimed to evaluate and compare the diagnostic performance of rFOV DWI with multi-detector computed tomography (MDCT) and conventional full field of view (fFOV) DWI for detecting early gastric cancer (EGC).

Methods

This retrospective study included 43 patients with pathologically confirmed EGC. All participants underwent pre-treatment imaging, including CT scans and MRI with a prototype rFOV DWI and conventional fFOV DWI at 3 Tesla. Quantitative (signal-to-noise ratio [SNR], contrast-to-noise ratio [CNR]) and qualitative (subjective image quality) assessments were performed. Diagnostic performance was evaluated using receiver operating characteristic (ROC) curves and area-under-the-curve (AUC) analysis.

Results

rFOV DWI demonstrated significantly higher SNR and CNR compared with fFOV DWI ( < 0.05). Subjective image quality scores were also superior for rFOV DWI ( < 0.05). In lesion detection, rFOV DWI showed higher sensitivity (0.705) than CT (0.636) and fFOV DWI (0.523). ROC analysis revealed that rFOV DWI had a higher AUC (0.829, 95% CI [0.764, 0.882]) than fFOV DWI (0.734, 95% CI [0.661, 0.798], = 0.02) and a modest improvement over CT (0.799, 95% CI [0.731, 0.856], = 0.51).

Discussion

The findings suggest that rFOV DWI provides superior image quality and diagnostic accuracy for EGC detection compared with conventional fFOV DWI. While it showed a trend toward better performance than CT, further studies with larger cohorts are needed to validate these results.

Conclusion

rFOV DWI offers improved image quality and diagnostic performance for early gastric cancer detection compared with fFOV DWI, with a potential advantage over CT. This technique may enhance early diagnosis and clinical decision-making in gastric cancer management.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056390767250917221319
2025-09-24
2025-11-08
Loading full text...

Full text loading...

/deliver/fulltext/cmir/21/1/CMIR-21-E15734056390767.html?itemId=/content/journals/cmir/10.2174/0115734056390767250917221319&mimeType=html&fmt=ahah

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J Clin202171320924910.3322/caac.2166033538338
    [Google Scholar]
  2. NeculaL. MateiL. DraguD. NeaguA.I. MambetC. NedeianuS. BleotuC. DiaconuC.C. Chivu-EconomescuM. Recent advances in gastric cancer early diagnosis.World J Gastroenterol201925172029204410.3748/wjg.v25.i17.202931114131
    [Google Scholar]
  3. Japanese classification of gastric carcinoma: 3rd English edition.Gastric Cancer201114210111210.1007/s10120‑011‑0041‑521573743
    [Google Scholar]
  4. SaragoniL. MorgagniP. GardiniA. MarfisiC. VittimbergaG. GarceaD. ScarpiE. Early gastric cancer: Diagnosis, staging, and clinical impact. Evaluation of 530 patients. New elements for an updated definition and classification.Gastric Cancer201316454955410.1007/s10120‑013‑0233‑223423491
    [Google Scholar]
  5. CaivanoR. RabascoP. LotumoloA. D’ AntuonoF. ZandolinoA. VillonioA. MacariniL. GuglielmiG. SalvatoreM. CammarotaA. Gastric cancer: The role of diffusion weighted imaging in the preoperative staging.Cancer Invest201432518419010.3109/07357907.2014.89601424654696
    [Google Scholar]
  6. JangK.M. KimS.H. LeeS.J. LeeM.W. ChoiD. KimK.M. Upper abdominal gadoxetic acid-enhanced and diffusion-weighted MRI for the detection of gastric cancer: Comparison with two-dimensional multidetector row CT.Clin Radiol201469882783510.1016/j.crad.2014.03.01724837701
    [Google Scholar]
  7. GigantiF. OrsenigoE. EspositoA. ChiariD. SalernoA. AmbrosiA. AlbarelloL. MazzaE. StaudacherC. Del MaschioA. De CobelliF. Prognostic role of diffusion-weighted mr imaging for resectable gastric cancer.Radiology2015276244445210.1148/radiol.1514190025816106
    [Google Scholar]
  8. BorggreveA.S. GoenseL. BrenkmanH.J.F. MookS. MeijerG.J. WesselsF.J. VerheijM. JansenE.P.M. van HillegersbergR. van RossumP.S.N. RuurdaJ.P. Imaging strategies in the management of gastric cancer: Current role and future potential of MRI.Br J Radiol20199210972018104410.1259/bjr.2018104430789792
    [Google Scholar]
  9. GigantiF. TangL. BabaH. Gastric cancer and imaging biomarkers: Part 1 – a critical review of DW-MRI and CE-MDCT findings.Eur Radiol20192941743175310.1007/s00330‑018‑5732‑430280246
    [Google Scholar]
  10. DietrichO. BiffarA. Baur-MelnykA. ReiserM.F. Technical aspects of MR diffusion imaging of the body.Eur J Radiol201076331432210.1016/j.ejrad.2010.02.01820299172
    [Google Scholar]
  11. MengT. LiuH. LiuJ. WangF. XieC. KeL. HeH. The investigation of reduced field-of-view diffusion-weighted imaging (DWI) in patients with nasopharyngeal carcinoma: Comparison with conventional DWI.Acta Radiol20236462118212510.1177/0284185123115938936912041
    [Google Scholar]
  12. ChenM. FengC. WangQ. LiJ. WuS. HuD. DengB. LiZ. Comparison of reduced field-of-view diffusion-weighted imaging (DWI) and conventional DWI techniques in the assessment of Cervical carcinoma at 3.0T: Image quality and FIGO staging.Eur J Radiol202113710955710.1016/j.ejrad.2021.10955733549900
    [Google Scholar]
  13. HuL. ZhouD. FuC. BenkertT. JiangC. LiR. WeiL. ZhaoJ. Advanced zoomed diffusion-weighted imaging vs. full-field-of-view diffusion-weighted imaging in prostate cancer detection: A radiomic features study.Eur Radiol20213131760176910.1007/s00330‑020‑07227‑432935192
    [Google Scholar]
  14. HeM. XuJ. SunZ. WangX. WangJ. FengF. XueH. JinZ. Prospective comparison of reduced field-of-view (rFOV) and full FOV (fFOV) diffusion-weighted imaging (DWI) in the assessment of insulinoma: Image quality and lesion detection.Acad Radiol202027111572157910.1016/j.acra.2019.11.01931954606
    [Google Scholar]
  15. HeY. WangM. YiS. LuY. RenJ. ZhouP. XuK. Diffusion-weighted imaging in the assessment of cervical cancer: Comparison of reduced field-of-view diffusion-weighted imaging and conventional techniques.Acta Radiol20236482485249110.1177/0284185123118387037545177
    [Google Scholar]
  16. ShiJ. LinJ. ZhouX. YinN. WuL. YuM. XuM. Comparison of reduced and full field of view in diffusion-weighted MRI on image quality: A meta-analysis.J Magn Reson Imaging202561269070110.1002/jmri.2948738896049
    [Google Scholar]
  17. MaC. LiY. PanC. WangH. WangJ. ChenS. LuJ. High resolution diffusion weighted magnetic resonance imaging of the pancreas using reduced field of view single-shot echo-planar imaging at 3 T.Magn Reson Imaging201432212513110.1016/j.mri.2013.10.00524231348
    [Google Scholar]
  18. FinsterbuschJ. Improving the performance of diffusion-weighted inner field-of-view echo-planar imaging based on 2D-Selective radiofrequency excitations by tilting the excitation plane.J Magn Reson Imaging201235498499210.1002/jmri.2352222170770
    [Google Scholar]
  19. ShinK.S. KimS.H. HanJ.K. LeeJ.M. LeeH.J. YangH.K. ChoiB.I. Three-dimensional MDCT gastrography compared with axial CT for the detection of early gastric cancer.J Comput Assist Tomogr200731574174910.1097/RCT.0b013e318033de8e17895786
    [Google Scholar]
  20. PengY. LiZ. TangH. WangY. HuX. ShenY. HuD. Comparison of reduced field-of-view diffusion-weighted imaging (DWI) and conventional DWI techniques in the assessment of rectal carcinoma at 3.0T: Image quality and histological T staging.J Magn Reson Imaging201847496797510.1002/jmri.2581428691219
    [Google Scholar]
  21. LiH.H. ZhuH. YueL. FuY. GrimmR. StemmerA. FuC.X. PengW. Feasibility of free-breathing dynamic contrast-enhanced MRI of gastric cancer using a golden-angle radial stack-of-stars VIBE sequence: Comparison with the conventional contrast-enhanced breath-hold 3D VIBE sequence.Eur Radiol20182851891189910.1007/s00330‑017‑5193‑129260366
    [Google Scholar]
  22. SheybaniA. MeniasC.O. LunaA. FowlerK.J. HaraA.K. SilvaA.C. YanoM. SandrasegaranK. MRI of the stomach: A pictorial review with a focus on oncological applications and gastric motility.Abdom Imaging201540490793010.1007/s00261‑014‑0251‑525261256
    [Google Scholar]
  23. MaccioniF. MarcelliG. Al AnsariN. ZippiM. De MarcoV. KagarmanovaA. VestriA. Marcheggiano-ClarkeL. MariniM. Preoperative T and N staging of gastric cancer: Magnetic resonance imaging (MRI) versus multi detector computed tomography (MDCT).Clin Ter20101612e57e6220499021
    [Google Scholar]
  24. LiuS. HeJ. GuanW. LiQ. YuH. ZhouZ. BaoS. ZhouZ. Added value of diffusion-weighted MR imaging to T2-weighted and dynamic contrast-enhanced MR imaging in T staging of gastric cancer.Clin Imaging201438212212810.1016/j.clinimag.2013.12.00124411204
    [Google Scholar]
  25. LiuS. HeJ. GuanW. LiQ. ZhangX. MaoH. YuH. ZhouZ. Preoperative T staging of gastric cancer: Comparison of diffusion- and T2-weighted magnetic resonance imaging.J Comput Assist Tomogr201438454455010.1097/RCT.000000000000009024733002
    [Google Scholar]
  26. MengX. HuH. WangY. HuD. LiZ. FengC. Application of bi-planar reduced field-of-view DWI (rFOV DWI) in the assessment of muscle-invasiveness of bladder cancer.Eur J Radiol202113610948610.1016/j.ejrad.2020.10948633434861
    [Google Scholar]
  27. LiQ. XuW.Y. SunN.N. FengQ.X. ZhuZ.N. HouY.J. SangZ.T. LiF.Y. LiB.W. XuH. LiuX.S. ZhangY.D. MRI versus dual-energy CT in local-regional staging of gastric cancer.Radiology2024312123238710.1148/radiol.23238739012251
    [Google Scholar]
  28. CaiJ.S. ChenH.Y. ChenJ.Y. LuY.F. SunJ.Z. ZhouY. YuR.S. Reduced field-of-view diffusion-weighted imaging (DWI) in patients with gastric cancer.Medicine (Baltimore)20209911861610.1097/MD.000000000001861631895817
    [Google Scholar]
  29. AttenbergerU.I. TavakoliA. StockerD. StiebS. RiestererO. TurinaM. SchoenbergS.O. PilzL. ReinerC.S. Reduced and standard field-of-view diffusion weighted imaging in patients with rectal cancer at 3 T—Comparison of image quality and apparent diffusion coefficient measurements.Eur J Radiol202013110925710.1016/j.ejrad.2020.10925732947092
    [Google Scholar]
  30. VidiriA. MinosseS. PiluduF. CurioneD. PichiB. SprianoG. MarziS. Feasibility study of reduced field of view diffusion-weighted magnetic resonance imaging in head and neck tumors.Acta Radiol201758329230010.1177/028418511665201427287402
    [Google Scholar]
  31. SingerL. WilmesL.J. SaritasE.U. ShankaranarayananA. ProctorE. WisnerD.J. ChangB. JoeB.N. NishimuraD.G. HyltonN.M. High-resolution diffusion-weighted magnetic resonance imaging in patients with locally advanced breast cancer.Acad Radiol201219552653410.1016/j.acra.2011.11.00322197382
    [Google Scholar]
  32. DongH. LiY. LiH. WangB. HuB. Study of the reduced field-of-view diffusion-weighted imaging of the breast.Clin Breast Cancer201414426527110.1016/j.clbc.2013.12.00124462803
    [Google Scholar]
  33. KornN. KurhanewiczJ. BanerjeeS. StarobinetsO. SaritasE. NoworolskiS. Reduced-FOV excitation decreases susceptibility artifact in diffusion-weighted MRI with endorectal coil for prostate cancer detection.Magn Reson Imaging2015331566210.1016/j.mri.2014.08.04025200645
    [Google Scholar]
  34. HwangJ. HongS.S. KimH. ChangY.W. NamB.D. OhE. LeeE. ChaH. Reduced field-of-view diffusion-weighted MRI in patients with cervical cancer.Br J Radiol20189110872017086410.1259/bjr.2017086429630391
    [Google Scholar]
  35. WuS. ZouX. WangQ. HuD. LiZ. XuC. Gallbladder carcinoma: An initial clinical experience of reduced field-of-view diffusion-weighted MRI.Cancer Imaging20202015010.1186/s40644‑020‑00326‑x32680571
    [Google Scholar]
  36. SeevaratnamR. CardosoR. McgregorC. LourencoL. MaharA. SutradharR. LawC. PaszatL. CoburnN. How useful is preoperative imaging for tumor, node, metastasis (TNM) staging of gastric cancer? A meta-analysis.Gastric Cancer201215S131810.1007/s10120‑011‑0069‑621837458
    [Google Scholar]
  37. AnzideiM. NapoliA. ZaccagnaF. Di PaoloP. ZiniC. Cavallo MarincolaB. GeigerD. CatalanoC. PassarielloR. Diagnostic performance of 64-MDCT and 1.5-T MRI with highresolution sequences in the T staging of gastric cancer: A comparative analysis with histopathology.Radiol Med200911471065107910.1007/s11547‑009‑0455‑x19774440
    [Google Scholar]
  38. HuangZ. XieD.H. GuoL. HuC.H. FangX. MengQ. PingX.X. LuZ.W. The utility of MRI for pre-operative T and N staging of gastric carcinoma: A systematic review and meta-analysis.Br J Radiol20158810502014055210.1259/bjr.2014055225790060
    [Google Scholar]
  39. SoydanL. DemirA.A. TorunM. CikrikciogluM.A. Use of diffusion-weighted magnetic resonance imaging and apparent diffusion coefficient in gastric cancer staging.Curr Med Imaging Rev202116101278128910.2174/157340561666620021812492632108000
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056390767250917221319
Loading
/content/journals/cmir/10.2174/0115734056390767250917221319
Loading

Data & Media loading...

Supplements

Supplementary material is available on the Publisher’s website.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test