Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background

Lung cancer is one of the main threats to global health, among lung diseases. Low-Dose Computed Tomography (LDCT) provides significant benefits for its screening but also brings new diagnostic challenges that require close attention.

Methods

By searching the Web of Science core collection, we selected articles and reviews published in English between 2005 and June 2024 on topics such as “Low-dose”, “CT image”, and “Lung”. These literatures were analyzed by bibliometric method, and CiteSpace software was used to explore the cooperation between countries, the cooperative relationship between authors, highly cited literature, and the distribution of keywords to reveal the research hotspots and trends in this field.

Results

The number of LDCT research articles show a trend of continuous growth between 2019 and 2022. The United States is at the forefront of research in this field, with a centrality of 0.31; China has also rapidly conducted research with a centrality of 0.26. The authors' co-occurrence map shows that research teams in this field are highly cooperative, and their research questions are closely related. The analysis of highly cited literature and keywords confirmed the significant advantages of LDCT in lung cancer screening, which can help reduce the mortality of lung cancer patients and improve the prognosis. “Lung cancer” and “CT” have always been high-frequency keywords, while “image quality” and “low dose CT” have become new hot keywords, indicating that LDCT using deep learning techniques has become a hot topic in early lung cancer research.

Discussion

The study revealed that advancements in CT technology have driven in-depth research from application challenges to image processing, with the research trajectory evolving from technical improvements to health risk assessments and subsequently to AI-assisted diagnosis. Currently, the research focus has shifted toward integrating deep learning with LDCT technology to address complex diagnostic challenges. The study also presents global research trends and geographical distributions of LDCT technology, along with the influence of key research institutions and authors. The comprehensive analysis aims to promote the development and application of LDCT technology in pulmonary disease diagnosis and enhance diagnostic accuracy and patient management efficiency.

Conclusion

The future will focus on LDCT reconstruction algorithms to balance image noise and radiation dose. AI-assisted multimodal imaging supports remote diagnosis and personalized health management by providing dynamic analysis, risk assessment, and follow-up recommendations to support early diagnosis.

© 2025 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056402094250530075121
2025-01-01
2025-09-03
Loading full text...

Full text loading...

/deliver/fulltext/cmir/21/1/CMIR-21-E15734056402094.html?itemId=/content/journals/cmir/10.2174/0115734056402094250530075121&mimeType=html&fmt=ahah

References

  1. RielyG.J. WoodD.E. EttingerD.S. AisnerD.L. AkerleyW. BaumanJ.R. BharatA. BrunoD.S. ChangJ.Y. ChirieacL.R. DeCampM. DesaiA.P. DillingT.J. DowellJ. DurmG.A. GettingerS. GrotzT.E. GubensM.A. JulooriA. LacknerR.P. LanutiM. LinJ. LooB.W. LovlyC.M. MaldonadoF. MassarelliE. MorgenszternD. MullikinT.C. NgT. OwenD. OwenD.H. PatelS.P. PatilT. PolancoP.M. RiessJ. ShapiroT.A. SinghA.P. StevensonJ. TamA. TanvetyanonT. YanagawaJ. YangS.C. YauE. GregoryK.M. HangL. Non–small cell lung cancer, version 4.2024, NCCN clinical practice guidelines in oncology.J. Natl. Compr. Canc. Netw.202422424927410.6004/jnccn.2204.002338754467
    [Google Scholar]
  2. BrayF. LaversanneM. SungH. FerlayJ. SiegelR.L. SoerjomataramI. JemalA. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202474322926310.3322/caac.2183438572751
    [Google Scholar]
  3. HanB. ZhengR. ZengH. WangS. SunK. ChenR. LiL. WeiW. HeJ. Cancer incidence and mortality in China, 2022.J. Natl. Cancer Cent.202441475310.1016/j.jncc.2024.01.00639036382
    [Google Scholar]
  4. PastorinoU. SilvaM. SestiniS. SabiaF. BoeriM. CantaruttiA. SverzellatiN. SozziG. CorraoG. MarchianòA. Prolonged lung cancer screening reduced 10-year mortality in the MILD trial: New confirmation of lung cancer screening efficacy.Ann. Oncol.20193071162116910.1093/annonc/mdz11730937431
    [Google Scholar]
  5. RydbergJ. BuckwalterK.A. CaldemeyerK.S. PhillipsM.D. ConcesD.J.Jr AisenA.M. PersohnS.A. KopeckyK.K. Multisection CT: Scanning techniques and clinical applications.Radiographics20002061787180610.1148/radiographics.20.6.g00nv07178711112829
    [Google Scholar]
  6. SiegelR.L. MillerK.D. WagleN.S. JemalA. Cancer statistics, 2023.CA Cancer J. Clin.2023731174810.3322/caac.2176336633525
    [Google Scholar]
  7. SluimerI. SchilhamA. ProkopM. van GinnekenB. Computer analysis of computed tomography scans of the lung: A survey.IEEE Trans. Med. Imaging200625438540510.1109/TMI.2005.86275316608056
    [Google Scholar]
  8. YamadaY. JinzakiM. HosokawaT. TanamiY. SugiuraH. AbeT. KuribayashiS. Dose reduction in chest CT: Comparison of the adaptive iterative dose reduction 3D, adaptive iterative dose reduction, and filtered back projection reconstruction techniques.Eur. J. Radiol.201281124185419510.1016/j.ejrad.2012.07.01322883532
    [Google Scholar]
  9. QianZ. HaoranS. XiaokunY. Adaptive Statistical iterative reconstruction and model-based iterative reconstruction on image quality and diagnosis of CT colonography.Chin. J. Med. Imaging.2014225331335
    [Google Scholar]
  10. ShenD. WuG. SukH.I. Deep learning in medical image analysis.Annu. Rev. Biomed. Eng.201719122124810.1146/annurev‑bioeng‑071516‑04444228301734
    [Google Scholar]
  11. BeckerN. MotschE. TrotterA. HeusselC.P. DienemannH. SchnabelP.A. KauczorH.U. MaldonadoS.G. MillerA.B. KaaksR. DelormeS. Lung cancer mortality reduction by LDCT screening: Results from the randomized German LUSI trial.Int. J. Cancer202014661503151310.1002/ijc.3248631162856
    [Google Scholar]
  12. GroupC.L.O. Chinese Expert Group on Early Diagnosis and Treatment of Lung Cancer China Lung Oncology Group China National lung cancer screening guideline with low-dose computed tomography (2023 Version).Chinese J. Lung Cancer20232611936792074
    [Google Scholar]
  13. PinskyP.F. Lung cancer screening with low-dose CT: A world-wide view.Transl. Lung Cancer Res.20187323424210.21037/tlcr.2018.05.1230050762
    [Google Scholar]
  14. WangY. PengY. WangT. LiH. ZhaoZ. GongL. PengB. The evolution and current situation in the application of dual-energy computed tomography: A bibliometric study.Quant. Imaging Med. Surg.202313106801681310.21037/qims‑23‑46737869341
    [Google Scholar]
  15. LiuY. JiangS. LinY. YuH. YuL. ZhangX. Research landscape and trends of lung cancer radiotherapy: A bibliometric analysis.Front. Oncol.202212106655710.3389/fonc.2022.106655736439443
    [Google Scholar]
  16. LiangH. ChenZ. WeiF. YangR. ZhouH. Bibliometrics research on radiomics of lung cancer.Transl. Cancer Res.20211083757377110.21037/tcr‑21‑127735116676
    [Google Scholar]
  17. SongW. TaoY. HuK. Visualization analysis on knowledge graph of traditional chinesemedicine in treating lung cancer based on cite space.Modernization. Trad. Chinese Med.2020221035493557[J].
    [Google Scholar]
  18. ChenC. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature.J. Am. Soc. Inf. Sci. Technol.2006573359377[J].10.1002/asi.20317
    [Google Scholar]
  19. ZhangB. AoB. LuX. YangS. BaoP. WangH. LiR. HuangY. Global research trends on precision oncology: A systematic review, bibliometrics, and visualized study.Medicine (Baltimore)202210143e31380e3138010.1097/MD.000000000003138036316889
    [Google Scholar]
  20. LivieratosL. Technical pitfalls and limitations of SPECT/CT.Semin. Nucl. Med.201545653054010.1053/j.semnuclmed.2015.06.00226522394
    [Google Scholar]
  21. ZhuN. ZhangD. WangW. LiX. YangB. SongJ. ZhaoX. HuangB. ShiW. LuR. NiuP. ZhanF. MaX. WangD. XuW. WuG. GaoG.F. TanW. China Novel Coronavirus Investigating and Research Team A novel coronavirus from patients with pneumonia in China, 2019.N. Engl. J. Med.2020382872773310.1056/NEJMoa200101731978945
    [Google Scholar]
  22. QingY.E. ChengfengQ.I.N Development of mRNA vaccines in response to the Public Health Emergency of International Concern.Synthetic Biology J.202452310320
    [Google Scholar]
  23. EshraghiM. HabibiG. RahimM. MirkazemiR. GhaemiM. OmidimoradA. AlaviA. BanazadehM. Bibliometric analysis of lung transplantation research articles.Thorac. Cardiovasc. Surg.201159210811410.1055/s‑0030‑125057621384307
    [Google Scholar]
  24. PeetersD. AlvesN. VenkadeshK.V. DinnessenR. SaghirZ. ScholtenE.T. Schaefer-ProkopC. VliegenthartR. ProkopM. JacobsC. Enhancing a deep learning model for pulmonary nodule malignancy risk estimation in chest CT with uncertainty estimation.Eur. Radiol.202434106639665110.1007/s00330‑024‑10714‑738536463
    [Google Scholar]
  25. ZhengS. van OoijenP.M.A. OudkerkM. The role of artificial intelligence artificial intelligence in cardiothoracic imaging.Cardiothoracic Imaging Cham: Springer International Publishing2022459464
    [Google Scholar]
  26. HeuvelmansM.A. van OoijenP.M.A. AtherS. SilvaC.F. HanD. HeusselC.P. HickesW. KauczorH.U. NovotnyP. PeschlH. RookM. RubtsovR. von StackelbergO. TsakokM.T. ArtetaC. DeclerckJ. KadirT. PickupL. GleesonF. OudkerkM. Lung cancer prediction by Deep Learning to identify benign lung nodules.Lung Cancer20211541410.1016/j.lungcan.2021.01.02733556604
    [Google Scholar]
  27. AberleD.R. AdamsA.M. BergC.D. BlackW.C. ClappJ.D. FagerstromR.M. GareenI.F. GatsonisC. MarcusP.M. SicksJ.D. National Lung Screening Trial Research Team Reduced lung-cancer mortality with low-dose computed tomographic screening.N. Engl. J. Med.2011365539540910.1056/NEJMoa110287321714641
    [Google Scholar]
  28. de KoningH.J. van der AalstC.M. de JongP.A. ScholtenE.T. NackaertsK. HeuvelmansM.A. LammersJ.W.J. WeeninkC. Yousaf-KhanU. HorewegN. van ’t WesteindeS. ProkopM. MaliW.P. Mohamed HoeseinF.A.A. van OoijenP.M.A. AertsJ.G.J.V. den BakkerM.A. ThunnissenE. VerschakelenJ. VliegenthartR. WalterJ.E. ten HaafK. GroenH.J.M. OudkerkM. Reduced lung-cancer mortality with volume CT screening in a randomized trial.N. Engl. J. Med.2020382650351310.1056/NEJMoa191179331995683
    [Google Scholar]
  29. BachP.B. MirkinJ.N. OliverT.K. AzzoliC.G. BerryD.A. BrawleyO.W. ByersT. ColditzG.A. GouldM.K. JettJ.R. SabichiA.L. Smith-BindmanR. WoodD.E. QaseemA. DetterbeckF.C. Benefits and harms of CT screening for lung cancer: A systematic review.JAMA2012307222418242910.1001/jama.2012.552122610500
    [Google Scholar]
  30. KristA.H. DavidsonK.W. MangioneC.M. BarryM.J. CabanaM. CaugheyA.B. DavisE.M. DonahueK.E. DoubeniC.A. KubikM. LandefeldC.S. LiL. OgedegbeG. OwensD.K. PbertL. SilversteinM. StevermerJ. TsengC.W. WongJ.B. US Preventive Services Task Force Screening for lung cancer: US Preventive Services Task Force recommendation statement.JAMA20213251096297010.1001/jama.2021.111733687470
    [Google Scholar]
  31. XiaD. YaoR. WangS. ChenG. WangY. Mapping trends and hotspots regarding clinical research on COVID-19: A bibliometric analysis of global research.Front. Public Health2021971348710.3389/fpubh.2021.71348734497794
    [Google Scholar]
  32. LiN. WangL. HuY. HanW. ZhengF. SongW. JiangJ. Global evolution of research on pulmonary nodules: A bibliometric analysis.Future Oncol.202117202631264510.2217/fon‑2020‑098733880950
    [Google Scholar]
  33. HudaW. Radiation doses and risks in chest computed tomography examinations.Proc. Am. Thorac. Soc.20074431632010.1513/pats.200611‑172HT17652493
    [Google Scholar]
  34. RaghuG. CollardH.R. EganJ.J. MartinezF.J. BehrJ. BrownK.K. ColbyT.V. CordierJ.F. FlahertyK.R. LaskyJ.A. LynchD.A. RyuJ.H. SwigrisJ.J. WellsA.U. AncocheaJ. BourosD. CarvalhoC. CostabelU. EbinaM. HansellD.M. JohkohT. KimD.S. KingT.E.Jr KondohY. MyersJ. MüllerN.L. NicholsonA.G. RicheldiL. SelmanM. DuddenR.F. GrissB.S. ProtzkoS.L. SchünemannH.J. ATS/ERS/JRS/ALAT Committee on Idiopathic Pulmonary Fibrosis An official ATS/ERS/JRS/ALAT statement: Idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management.Am. J. Respir. Crit. Care Med.2011183678882410.1164/rccm.2009‑040GL21471066
    [Google Scholar]
  35. WuM.T. YangP. HuangY.L. ChenJ.S. ChuoC.C. YehC. ChangR.S. Coronary arterial calcification on low-dose ungated MDCT for lung cancer screening: Concordance study with dedicated cardiac CT.AJR Am. J. Roentgenol.2008190492392810.2214/AJR.07.297418356438
    [Google Scholar]
  36. SchmidtG.P. SchoenbergS.O. SchmidR. StahlR. TilingR. BeckerC.R. ReiserM.F. Baur-MelnykA. Screening for bone metastases: Whole-body MRI using a 32-channel system versus dual-modality PET-CT.Eur. Radiol.200717493994910.1007/s00330‑006‑0361‑816951929
    [Google Scholar]
  37. SuzukiK. KoikeT. AsakawaT. KusumotoM. AsamuraH. NagaiK. TadaH. MitsudomiT. TsuboiM. ShibataT. FukudaH. KatoH. Japan Lung Cancer Surgical Study Group (JCOG LCSSG) A prospective radiological study of thin-section computed tomography to predict pathological noninvasiveness in peripheral clinical IA lung cancer (Japan Clinical Oncology Group 0201).J. Thorac. Oncol.20116475175610.1097/JTO.0b013e31821038ab21325976
    [Google Scholar]
  38. CaoC.F. MaK.L. ShanH. LiuT.F. ZhaoS.Q. WanY. Jun-Zhang WangH.Q. CT scans and cancer risks: A systematic review and dose-response meta-analysis.BMC Cancer20222211238123810.1186/s12885‑022‑10310‑236451138
    [Google Scholar]
  39. HechtS.S. Lung carcinogenesis by tobacco smoke.Int. J. Cancer2012131122724273210.1002/ijc.2781622945513
    [Google Scholar]
  40. McColloughC.H. BruesewitzM.R. KoflerJ.M.Jr CT dose reduction and dose management tools: Overview of available options.Radiographics200626250351210.1148/rg.26205513816549613
    [Google Scholar]
  41. DemariaS. GoldenE.B. FormentiS.C. Role of local radiation therapy in cancer immunotherapy.JAMA Oncol.2015191325133210.1001/jamaoncol.2015.275626270858
    [Google Scholar]
  42. SinghS. KalraM.K. HsiehJ. LicatoP.E. DoS. PienH.H. BlakeM.A. Abdominal CT: Comparison of adaptive statistical iterative and filtered back projection reconstruction techniques.Radiology2010257237338310.1148/radiol.1009221220829535
    [Google Scholar]
  43. BeisterM. KolditzD. KalenderW.A. Iterative reconstruction methods in X-ray CT.Phys. Med.20122829410810.1016/j.ejmp.2012.01.00322316498
    [Google Scholar]
  44. DeákZ. GrimmJ.M. TreitlM. GeyerL.L. LinsenmaierU. KörnerM. ReiserM.F. WirthS. Filtered back projection, adaptive statistical iterative reconstruction, and a model-based iterative reconstruction in abdominal CT: An experimental clinical study.Radiology2013266119720610.1148/radiol.1211270723169793
    [Google Scholar]
  45. HuangP. ParkS. YanR. LeeJ. ChuL.C. LinC.T. HussienA. RathmellJ. ThomasB. ChenC. HalesR. EttingerD.S. BrockM. HuP. FishmanE.K. GabrielsonE. LamS. Added value of computer-aided CT image features for early lung cancer diagnosis with small pulmonary nodules: a matched case-control study.Radiology2018286128629510.1148/radiol.201716272528872442
    [Google Scholar]
  46. BlancD. RacineV. KhalilA. DelocheM. BroyelleJ.A. HammouamriI. SinitambirivoutinE. FiammanteM. VerdierE. BessonT. SadateA. LederlinM. LaurentF. ChassagnonG. FerrettiG. DiascornY. BrilletP.Y. CassagnesL. CaramellaC. LoubetA. AbassebayN. CuingnetP. OhanaM. BehrJ. GinzacA. VeyssiereH. DurandoX. BousaïdI. LassauN. BrehantJ. Artificial intelligence solution to classify pulmonary nodules on CT.Diagn. Interv. Imaging20201011280381010.1016/j.diii.2020.10.00433168496
    [Google Scholar]
  47. LiuJ.A. YangI.Y. TsaiE.B. Artificial intelligence (AI) for lung nodules, from the AJR special series on AI applications.AJR Am. J. Roentgenol.2022219570371210.2214/AJR.22.2748735544377
    [Google Scholar]
  48. SpickC. HerrmannK. CzerninJ. 18F-FDG PET/CT and PET/MRI perform equally well in cancer: Evidence from studies on more than 2,300 patients.J. Nucl. Med.201657342043010.2967/jnumed.115.15880826742709
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056402094250530075121
Loading
/content/journals/cmir/10.2174/0115734056402094250530075121
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test