Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Aim

The study aims to investigate the prognostic value of deep learning based pericoronary adipose tissue attenuation computed tomography (PCAT) and plaque volume beyond coronary computed tomography angiography (CTA) -derived fractional flow reserve (CT-FFR) in patients with percutaneous coronary intervention (PCI).

Methods

A total of 183 patients with PCI who underwent coronary CTA were included in this retrospective study. Imaging assessment included PCAT, plaque volume, and CT-FFR, which were performed using an artificial intelligence (AI) assisted workstation. Kaplan-Meier survival curves analysis and multivariate Cox regression were used to estimate major adverse cardiovascular events (MACE), including non-fatal myocardial infraction (MI), stroke, and mortality.

Results

In total, 22 (12%) MACE occurred during a median follow-up period of 38.0 months (34.6-54.6 months). Kaplan-Meier analysis revealed that right coronary artery (RCA) PCAT ( = 0.007) and plaque volume ( = 0.008) were significantly associated with the increase in MACE. Multivariable Cox regression indicated that RCA PCAT (hazard ratios (HR): 7.05, 95%CI: 1.44-34.63, p = 0.016) and plaque volume (HR: 3.84, 95%CI: 1.44-10.27, p = 0.007) were independent predictors of MACE after adjustment by clinical risk factors. However, CT-FFR was not independently associated with MACE in multivariable Cox regression (p = 0.150).

Conclusions

Deep learning based RCA PCAT and plaque volume derived from coronary CTA were found to be more strongly associated with MACE than CT-FFR in patients with PCI.

© 2025 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056335065250426150739
2025-01-01
2025-09-03
Loading full text...

Full text loading...

/deliver/fulltext/cmir/21/1/CMIR-21-E15734056335065.html?itemId=/content/journals/cmir/10.2174/0115734056335065250426150739&mimeType=html&fmt=ahah

References

  1. KnuutiJ. WijnsW. SarasteA. CapodannoD. BarbatoE. Funck-BrentanoC. PrescottE. StoreyR.F. DeatonC. CuissetT. AgewallS. DicksteinK. EdvardsenT. EscanedJ. GershB.J. SvitilP. GilardM. HasdaiD. HatalaR. MahfoudF. MasipJ. MunerettoC. ValgimigliM. AchenbachS. BaxJ.J. NeumannF-J. SechtemU. BanningA.P. BonarosN. BuenoH. BugiardiniR. ChieffoA. CreaF. CzernyM. DelgadoV. DendaleP. FlachskampfF.A. GohlkeH. GroveE.L. JamesS. KatritsisD. LandmesserU. LettinoM. MatterC.M. NathoeH. NiessnerA. PatronoC. PetronioA.S. PettersenS.E. PiccoloR. PiepoliM.F. PopescuB.A. RäberL. RichterD.J. RoffiM. RoithingerF.X. ShlyakhtoE. SibbingD. SilberS. SimpsonI.A. Sousa-UvaM. VardasP. WitkowskiA. ZamoranoJ.L. AchenbachS. AgewallS. BarbatoE. BaxJ.J. CapodannoD. CuissetT. DeatonC. DicksteinK. EdvardsenT. EscanedJ. Funck-BrentanoC. GershB.J. GilardM. HasdaiD. HatalaR. MahfoudF. MasipJ. MunerettoC. PrescottE. SarasteA. StoreyR.F. SvitilP. ValgimigliM. WindeckerS. AboyansV. BaigentC. ColletJ-P. DeanV. DelgadoV. FitzsimonsD. GaleC.P. GrobbeeD. HalvorsenS. HindricksG. IungB. JüniP. KatusH.A. LandmesserU. LeclercqC. LettinoM. LewisB.S. MerkelyB. MuellerC. PetersenS. PetronioA.S. RichterD.J. RoffiM. ShlyakhtoE. SimpsonI.A. Sousa-UvaM. TouyzR.M. BenkheddaS. MetzlerB. SujayevaV. CosynsB. KusljugicZ. VelchevV. PanayiG. KalaP. Haahr-PedersenS.A. KabilH. AinlaT. KaukonenT. CaylaG. PagavaZ. WoehrleJ. KanakakisJ. TóthK. GudnasonT. PeaceA. AronsonD. RiccioC. EleziS. MirrakhimovE. HansoneS. SarkisA. BabarskieneR. BeisselJ. MaempelA.J.C. RevencoV. GroothD.G.J. PejkovH. JuliebøV. LipiecP. SantosJ. ChioncelO. DuplyakovD. BertelliL. DikicA.D. StudenčanM. BuncM. AlfonsoF. BäckM. ZellwegerM. AddadF. YildirirA. SirenkoY. ClappB. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes.Eur. Heart J.202041340747710.1093/eurheartj/ehz42531504439
    [Google Scholar]
  2. ViraniS.S. NewbyL.K. ArnoldS.V. BittnerV. BrewerL.C. DemeterS.H. DixonD.L. FearonW.F. HessB. JohnsonH.M. KaziD.S. KolteD. KumbhaniD.J. LoFasoJ. MahttaD. MarkD.B. MinissianM. NavarA.M. PatelA.R. PianoM.R. RodriguezF. TalbotA.W. TaquetiV.R. ThomasR.J. DiepenV.S. WigginsB. WilliamsM.S. 2023 AHA/ACC/ACCP/ASPC/NLA/PCNA guideline for the management of patients with chronic coronary disease.J. Am. Coll. Cardiol.202382983395510.1016/j.jacc.2023.04.00337480922
    [Google Scholar]
  3. NowbarAN RajkumarC FoleyM A double-blind randomised placebo-controlled trial of percutaneous coronary intervention for the relief of stable angina without antianginal medications: Design and rationale of the ORBITA-2 trial.EuroIntervention202217181490149710.4244/EIJ‑D‑21‑00649
    [Google Scholar]
  4. National Center for Cardiovascular Diseases 2022 Report on Cardiovascular Health and Diseases in China.BeijingPeking Union Medical College Press2023
    [Google Scholar]
  5. TaoS. TangX. YuL. LiL. ZhangG. ZhangL. HuangL. WuJ. Prognosis of coronary heart disease after percutaneous coronary intervention: A bibliometric analysis over the period 2004–2022.Eur. J. Med. Res.202328131110.1186/s40001‑023‑01220‑537658418
    [Google Scholar]
  6. AbbateA. Biondi-ZoccaiG.G.L. AgostoniP. LipinskiM.J. VetrovecG.W. Recurrent angina after coronary revascularization: A clinical challenge.Eur. Heart J.20072891057106510.1093/eurheartj/ehl56217384090
    [Google Scholar]
  7. WindeckerS. KolhP. 2014 ESC/EACTS guidelines on myocardial revascularization: The task force on myocardial revascularization of the european society of cardiology (ESC) and the european association for cardio-thoracic surgery (EACTS) developed with the special contribution of the european association of percutaneous cardiovascular interventions (eapci).Europ. Heart J.2014353725412619
    [Google Scholar]
  8. FarooqV. KlaverenV.D. SteyerbergE.W. MeligaE. VergouweY. ChieffoA. KappeteinA.P. ColomboA. HolmesD.R.Jr MackM. FeldmanT. MoriceM.C. StåhleE. OnumaY. MorelM. Garcia-GarciaH.M. EsV.G.A. DawkinsK.D. MohrF.W. SerruysP.W. Anatomical and clinical characteristics to guide decision making between coronary artery bypass surgery and percutaneous coronary intervention for individual patients: Development and validation of SYNTAX score II.Lancet2013381986763965010.1016/S0140‑6736(13)60108‑723439103
    [Google Scholar]
  9. HossainA. SmallG. CreanA.M. JonesR. YamY. BishopH. ChowB.J.W. Prognostic value of coronary computed tomography angiography in patients with prior percutaneous coronary intervention.J. Cardiovasc. Comput. Tomogr.202115326827310.1016/j.jcct.2020.09.00732981882
    [Google Scholar]
  10. RimacG. FearonW.F. BruyneD.B. IkenoF. MatsuoH. PirothZ. CosterousseO. BertrandO.F. Clinical value of post–percutaneous coronary intervention fractional flow reserve value: A systematic review and meta-analysis.Am. Heart J.20171831910.1016/j.ahj.2016.10.00527979031
    [Google Scholar]
  11. TangC.X. GuoB.J. SchoepfJ.U. BayerR.R.II LiuC.Y. QiaoH.Y. ZhouF. LuG.M. ZhouC.S. ZhangL.J. Feasibility and prognostic role of machine learning-based FFRCT in patients with stent implantation.Eur. Radiol.20213196592660410.1007/s00330‑021‑07922‑w33864504
    [Google Scholar]
  12. OikonomouE.K. MarwanM. DesaiM.Y. MancioJ. AlashiA. CentenoH.E. ThomasS. HerdmanL. KotanidisC.P. ThomasK.E. GriffinB.P. FlammS.D. AntonopoulosA.S. ShirodariaC. SabharwalN. DeanfieldJ. NeubauerS. HopewellJ.C. ChannonK.M. AchenbachS. AntoniadesC. Non-invasive detection of coronary inflammation using computed tomography and prediction of residual cardiovascular risk (the CRISP CT study): A post-hoc analysis of prospective outcome data.Lancet20183921015192993910.1016/S0140‑6736(18)31114‑030170852
    [Google Scholar]
  13. WenD. RenZ. XueR. AnR. XuJ. LiJ. ZhengM. Lack of incremental prognostic value of pericoronary adipose tissue computed tomography attenuation beyond coronary artery disease reporting and data system for major adverse cardiovascular events in patients with acute chest pain.Circ. Cardiovasc. Imaging202316753654410.1161/CIRCIMAGING.122.01512037381909
    [Google Scholar]
  14. NurmohamedN.S. BomM.J. JukemaR.A. GrootD.R.J. DriessenR.S. DiemenV.P.A. WinterD.R.W. GaillardE.L. SprengersR.W. StroesE.S.G. MinJ.K. EarlsJ.P. CardosoR. BlanksteinR. DanadI. ChoiA.D. KnaapenP. AI-guided quantitative plaque staging predicts long-term cardiovascular outcomes in patients at risk for atherosclerotic CVD.JACC Cardiovasc. Imaging202417326928010.1016/j.jcmg.2023.05.02037480907
    [Google Scholar]
  15. MinJ.K. ChangH.J. AndreiniD. PontoneG. GuglielmoM. BaxJ.J. KnaapenP. RamanS.V. ChazalR.A. FreemanA.M. CrabtreeT. EarlsJ.P. Coronary CTA plaque volume severity stages according to invasive coronary angiography and FFR.J. Cardiovasc. Comput. Tomogr.202216541542210.1016/j.jcct.2022.03.00135379596
    [Google Scholar]
  16. HuangZ. YangY. WangZ. HuY. CaoB. LiM. DuX. WangX. LiZ. WangW. DingY. XiaoJ. HuY. WangX. Comparison of prognostic value between CAD-RADS 1.0 and CAD-RADS 2.0 evaluated by convolutional neural networks based CCTA.Heliyon202395e1598810.1016/j.heliyon.2023.e1598837215852
    [Google Scholar]
  17. HuangZ. XiaoJ. WangX. LiZ. GuoN. HuY. LiX. WangX. Clinical evaluation of the automatic coronary artery disease reporting and data system (CAD-RADS) in coronary computed tomography angiography using convolutional neural networks.Acad. Radiol.202330469870610.1016/j.acra.2022.05.01535753936
    [Google Scholar]
  18. PirothZ. TothG.G. ToninoP.A.L. BarbatoE. AghlmandiS. CurzenN. RioufolG. PijlsN.H.J. FearonW.F. JüniP. BruyneD.B. Prognostic value of fractional flow reserve measured immediately after drug-eluting stent implantation.Circ. Cardiovasc. Interv.2017108e00523310.1161/CIRCINTERVENTIONS.116.00523328790165
    [Google Scholar]
  19. AgarwalS.K. KasulaS. HaciogluY. AhmedZ. UretskyB.F. HakeemA. Utilizing post-intervention fractional flow reserve to optimize acute results and the relationship to long-term outcomes.JACC Cardiovasc. Interv.20169101022103110.1016/j.jcin.2016.01.04627198682
    [Google Scholar]
  20. JohnsonN.P. TóthG.G. LaiD. ZhuH. AçarG. AgostoniP. AppelmanY. ArslanF. BarbatoE. ChenS.L. SerafinoD.L. Domínguez-FrancoA.J. DupouyP. EsenA.M. EsenÖ.B. HamilosM. IwasakiK. JensenL.O. Jiménez-NavarroM.F. KatritsisD.G. KocamanS.A. KooB.K. López-PalopR. LorinJ.D. MillerL.H. MullerO. NamC.W. OudN. PuymiratE. RieberJ. RioufolG. Rodés-CabauJ. SedlisS.P. TakeishiY. ToninoP.A.L. BelleV.E. VernaE. WernerG.S. FearonW.F. PijlsN.H.J. BruyneD.B. GouldK.L. Prognostic value of fractional flow reserve: Linking physiologic severity to clinical outcomes.J. Am. Coll. Cardiol.201464161641165410.1016/j.jacc.2014.07.97325323250
    [Google Scholar]
  21. DiemenV.P.A. BomM.J. DriessenR.S. SchumacherS.P. EveraarsH. WinterD.R.W. VenD.V.P.M. FreimanM. GoshenL. HeijtelD. LangzamE. MinJ.K. LeipsicJ.A. RaijmakersP.G. RossumV.A.C. DanadI. KnaapenP. Prognostic value of RCA pericoronary adipose tissue CT-attenuation beyond high-risk plaques, plaque volume, and ischemia.JACC Cardiovasc. Imaging20211481598161010.1016/j.jcmg.2021.02.02633958312
    [Google Scholar]
  22. TzolosE. WilliamsM.C. McElhinneyP. LinA. GrodeckiK. TomasinoF.G. CadetS. KwiecinskiJ. DorisM. AdamsonP.D. MossA.J. AlamS. HunterA. ShahA.S.V. MillsN.L. PawadeT. WangC. Weir-McCallJ.R. RoditiG. BeekV.E.J.R. ShawL.J. NicolE.D. BermanD.S. SlomkaP.J. DweckM.R. NewbyD.E. DeyD. Pericoronary Adipose Tissue Attenuation, Low-Attenuation Plaque Burden, and 5-Year Risk of Myocardial Infarction.JACC Cardiovasc. Imaging20221561078108810.1016/j.jcmg.2022.02.00435450813
    [Google Scholar]
  23. ErlingeD. MaeharaA. Ben-YehudaO. BøtkerH.E. MaengM. Kjøller-HansenL. EngstrømT. MatsumuraM. CrowleyA. DresslerO. MintzG.S. FröbertO. PerssonJ. WisethR. LarsenA.I. JensenO.L. NordrehaugJ.E. BleieØ. OmerovicE. HeldC. JamesS.K. AliZ.A. MullerJ.E. StoneG.W. AhlehoffO. AminA. AngeråsO. AppikondaP. BalachandranS. BarvikS. BendixK. BertilssonM. BodenU. BogaleN. BonarjeeV. CalaisF. CarlssonJ. CarstensenS. ChristerssonC. ChristiansenE.H. CorralM. BackerD.O. DhahaU. DworeckC. EggersK. ElfströmC. EllertJ. EriksenE. FallesenC. ForsmanM. FranssonH. GaballaM. GackiM. GötbergM. HagströmL. HallbergT. HambraeusK. HaraldssonI. HarnekJ. HavndrupO. HegbomK. HeigertM. HelqvistS. HerstadJ. HijaziZ. HolmvangL. IoanesD. IqbalA. IversenA. JacobsonJ. JakobsenL. JankovicI. JensenU. JensevikK. JohnstonN. JonassonT.F. JørgensenE. JoshiF. KajermoU. KåverF. KelbækH. KellerthT. KishM. KoenigW. KoulS. LagerqvistB. LarssonB. LassenJ.F. LeirenO. LiZ. LidellC. LinderR. LindstaedtM. LindströmG. LiuS. LølandK.H. LønborgJ. MártonL. Mir-AkbariH. MohamedS. OdenstedtJ. OgneC. OldgrenJ. OlivecronaG. Östlund-PapadogeorgosN. OttesenM. PackerE. PalmquistÅ.M. ParachaQ. PedersenF. PeturssonP. RåmunddalT. RotevatnS. SanchezR. SarnoG. SaunamäkiK.I. SchersténF. SerruysP.W. SjögrenI. SørensenR. SrdanovicI. SubhaniZ. SvenssonE. ThuesenA. TijssenJ. TilstedH-H. TödtT. TrovikT. VågaB.I. VarenhorstC. VeienK. VestmanE. VölzS. WallentinL. WykrzykowskaJ. ZagozdzonL. ZamfirM. ZedighC. ZhongH. ZhouZ. Identification of vulnerable plaques and patients by intracoronary near-infrared spectroscopy and ultrasound (PROSPECT II): A prospective natural history study.Lancet20213971027898599510.1016/S0140‑6736(21)00249‑X33714389
    [Google Scholar]
  24. LuZ.F. YinW.H. SchoepfU.J. AbrolS. MaJ.W. YuX.B. ZhaoL. SuX.M. WangC.S. AnY.Q. XiaoZ.C. LuB. Residual risk in Non–ST-segment elevation acute coronary syndrome: Quantitative plaque analysis at coronary CT angiography.Radiology20233082e23012410.1148/radiol.23012437606570
    [Google Scholar]
  25. LinA. ManralN. McElhinneyP. KillekarA. MatsumotoH. KwiecinskiJ. PieszkoK. RazipourA. GrodeckiK. ParkC. OtakiY. DorisM. KwanA.C. HanD. KuronumaK. TomasinoF.G. TzolosE. ShanbhagA. GoellerM. MarwanM. GransarH. TamarappooB.K. CadetS. AchenbachS. NichollsS.J. WongD.T. BermanD.S. DweckM. NewbyD.E. WilliamsM.C. SlomkaP.J. DeyD. Deep learning-enabled coronary CT angiography for plaque and stenosis quantification and cardiac risk prediction: An international multicentre study.Lancet Digit. Health202244e256e26510.1016/S2589‑7500(22)00022‑X35337643
    [Google Scholar]
  26. AndreiniD. MagnoniM. ConteE. MassonS. MushtaqS. BertiS. CanestrariM. CasoloG. GabrielliD. LatiniR. MarracciniP. MoccettiT. ModenaM.G. PontoneG. GoriniM. MaggioniA.P. MaseriA. Coronary plaque features on CTA can identify patients at increased risk of cardiovascular events.JACC Cardiovasc. Imaging20201381704171710.1016/j.jcmg.2019.06.01931422137
    [Google Scholar]
  27. WilliamsM.C. MossA.J. DweckM. AdamsonP.D. AlamS. HunterA. ShahA.S.V. PawadeT. Weir-McCallJ.R. RoditiG. BeekV.E.J.R. NewbyD.E. NicolE.D. Coronary artery plaque characteristics associated with adverse outcomes in the SCOT-HEART Study.J. Am. Coll. Cardiol.201973329130110.1016/j.jacc.2018.10.06630678759
    [Google Scholar]
  28. WilliamsM.C. KwiecinskiJ. DorisM. McElhinneyP. D’SouzaM.S. CadetS. AdamsonP.D. MossA.J. AlamS. HunterA. ShahA.S.V. MillsN.L. PawadeT. WangC. McCallW.J. Bonnici-MalliaM. MurrillsC. RoditiG. BeekV.E.J.R. ShawL.J. NicolE.D. BermanD.S. SlomkaP.J. NewbyD.E. DweckM.R. DeyD. Low-attenuation noncalcified plaque on coronary computed tomography angiography predicts myocardial infarction.Circulation2020141181452146210.1161/CIRCULATIONAHA.119.04472032174130
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056335065250426150739
Loading
/content/journals/cmir/10.2174/0115734056335065250426150739
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test