Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Introduction

Thyroid ultrasound has emerged as a critical diagnostic modality, attracting substantial research attention. This bibliometric analysis systematically maps the 30-year evolution of thyroid ultrasound research to identify developmental trends, research hotspots, and emerging frontiers.

Methods

English-language articles and reviews (1994-2023) from Web of Science Core Collection were extracted. Bibliometric analysis was performed using VOSviewer and CiteSpace to examine collaborative networks among countries/institutions/authors, reference timeline visualization, and keyword burst detection.

Results

A total of 8,489 documents were included for further analysis. An overall upward trend in research publications was found. China, the United States, and Italy were the productive countries, while the United States, Italy, and South Korea had the greatest influence. The journal Thyroid obtained the highest IF. The keywords with the greatest strength were “disorders”, “thyroid volume”, and “association guidelines”. The timeline view of reference demonstrated that deep learning, ultrasound-based risk stratification systems, and radiofrequency ablation were the latest reference clusters.

Discussion

Three dominant themes emerged: the ultrasound characteristics of thyroid disorders, the application of new techniques, and the assessment of the risk of malignancy of thyroid nodules. Applications of deep learning and the development and improvement of correlation guides such as TI-RADS are the present focus of research.

Conclusion

The specific application efficacy and improvement of TI-RADS and the optimization of deep learning algorithms and their clinical applicability will be the focus of subsequent research.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056396607250811115439
2025-08-21
2025-10-29
Loading full text...

Full text loading...

/deliver/fulltext/cmir/21/1/CMIR-21-E15734056396607.html?itemId=/content/journals/cmir/10.2174/0115734056396607250811115439&mimeType=html&fmt=ahah

References

  1. GaltonV.A. HernandezA. Thyroid hormone metabolism: A historical perspective.Thyroid2023331243110.1089/thy.2022.016135699066
    [Google Scholar]
  2. TeixeiraP.F.S. dos SantosP.B. Pazos-MouraC.C. The role of thyroid hormone in metabolism and metabolic syndrome.Ther. Adv. Endocrinol. Metab.202011204201882091786910.1177/204201882091786932489580
    [Google Scholar]
  3. Abdel-MoneimA. GaberA.M. GoudaS. OsamaA. OthmanS.I. AllamG. Relationship of thyroid dysfunction with cardiovascular diseases: Updated review on heart failure progression.Hormones (Athens)202019330130910.1007/s42000‑020‑00208‑832488814
    [Google Scholar]
  4. GuthS. TheuneU. AberleJ. GalachA. BambergerC.M. Very high prevalence of thyroid nodules detected by high frequency (13 MHz) ultrasound examination.Eur. J. Clin. Invest.200939869970610.1111/j.1365‑2362.2009.02162.x19601965
    [Google Scholar]
  5. BrauckhoffK. BiermannM. Multimodal imaging of thyroid cancer.Curr. Opin. Endocrinol. Diabetes Obes.202027533534410.1097/MED.000000000000057432773568
    [Google Scholar]
  6. ZhuZ. ZhouC. XuC. YangB. HuangY. ShenB. DongX. XuX. LiuG. Preoperative US integrated random forest model for predicting delphian lymph node metastasis in patients with papillary thyroid cancer.Curr. Med. Imaging2023199e05012321239710.2174/157340561966623010515021936606588
    [Google Scholar]
  7. AlexanderL.F. PatelN.J. CasertaM.P. RobbinM.L. Thyroid Ultrasound.Radiol. Clin. North Am.20205861041105710.1016/j.rcl.2020.07.00333040847
    [Google Scholar]
  8. SharmaR. Kumar MahantiG. PandaG. SinghA. Thyroid nodules classification using weighted average ensemble and DCRITIC Based TOPSIS methods for ultrasound images.Curr. Med. Imaging202320e05042321544610.2174/157340562066623040508535837038671
    [Google Scholar]
  9. KlarichS. WhiteH. Can ultrasound strain elastography (USE) improve management of suspicious thyroid nodules measuring 10 mm? A systematic review.Radiography202329366166710.1016/j.radi.2023.04.01537148707
    [Google Scholar]
  10. RadzinaM. RatnieceM. PutrinsD.S. SauleL. CantisaniV. performance of contrast-enhanced ultrasound in thyroid nodules: Review of current state and future perspectives.Cancers 20211321546910.3390/cancers1321546934771632
    [Google Scholar]
  11. PengY. WangT.T. WangJ.Z. WangH. FanR.Y. GongL.G. LiW.G. The application of artificial intelligence in thyroid nodules: A systematic review based on bibliometric analysis.Endocr. Metab. Immune Disord. Drug Targets202424111280129010.2174/011871530326425423111711345638178659
    [Google Scholar]
  12. TangJ. WangL. SunZ. LiuX. LiH. MaJ. XiX. ZhangB. citations on ultrasound-guided thermal ablation for thyroid nodules from 2000 to 2022: A bibliometric analysis.Int. J. Hyperthermia2023401226887410.1080/02656736.2023.226887437848401
    [Google Scholar]
  13. MarinoC. MartinelliM. MonacelliG. StracciF. StalteriD. MastrandreaV. PuxedduE. SanteusanioF. Evaluation of goiter using ultrasound criteria: A survey in a middle schoolchildren population of a mountain area in Central Italy.J. Endocrinol. Invest.2006291086987510.1007/BF0334918917185894
    [Google Scholar]
  14. LyshchikA. DrozdV. ReinersC. Accuracy of three-dimensional ultrasound for thyroid volume measurement in children and adolescents.Thyroid200414211312010.1089/10507250432288034615068625
    [Google Scholar]
  15. SemizS. ŞenolU. BircanO. GümüşlüS. BilmenS. BircanI. Correlation between age, body size and thyroid volume in an endemic area.J. Endocrinol. Invest.200124855956310.1007/BF0334389411686536
    [Google Scholar]
  16. PolakM. Le GacI. VuillardE. GuibourdencheJ. LegerJ. ToubertM.E. MadecA.M. OuryJ.F. CzernichowP. LutonD. Fetal and neonatal thyroid function in relation to maternal Graves’ disease.Best Pract. Res. Clin. Endocrinol. Metab.200418228930210.1016/j.beem.2004.03.00915157841
    [Google Scholar]
  17. AlginO. AlginE. GokalpG. OcakoğluG. ErdoğanC. SaraydarogluO. TuncelE. Role of duplex power Doppler ultrasound in differentiation between malignant and benign thyroid nodules.Korean J. Radiol.201011659460210.3348/kjr.2010.11.6.59421076584
    [Google Scholar]
  18. KobayashiK. HirokawaM. YabutaT. MasuokaH. FukushimaM. KiharaM. HigashiyamaT. ItoY. MiyaA. AminoN. MiyauchiA. Tumor protrusion with intensive blood signals on ultrasonography is a strongly suggestive finding of follicular thyroid carcinoma.Med. Ultrason.2016181252910.11152/mu.2013.2066.181.kok26962550
    [Google Scholar]
  19. KimH. KimJ.A. SonE.J. YoukJ.H. Quantitative assessment of shear-wave ultrasound elastography in thyroid nodules: Diagnostic performance for predicting malignancy.Eur. Radiol.20132392532253710.1007/s00330‑013‑2847‑523604801
    [Google Scholar]
  20. SchlederS. JankeM. AghaA. SchachererD. HornungM. SchlittH.J. StroszczynskiC. SchreyerA.G. JungE.M. Preoperative differentiation of thyroid adenomas and thyroid carcinomas using high resolution contrast-enhanced ultrasound (CEUS).Clin. Hemorheol. Microcirc.2015611132210.3233/CH‑14184824898562
    [Google Scholar]
  21. WuL.M. GuH.Y. QuX.H. ZhengJ. ZhangW. YinY. XuJ.R. The accuracy of ultrasonography in the preoperative diagnosis of cervical lymph node metastasis in patients with papillary thyroid carcinoma: A meta-analysis.Eur. J. Radiol.20128181798180510.1016/j.ejrad.2011.04.02821536396
    [Google Scholar]
  22. MelanyM. ChenS. Thyroid Cancer.Endocrinol. Metab. Clin. North Am.201746369171110.1016/j.ecl.2017.04.01128760234
    [Google Scholar]
  23. BaskinH.J. Ultrasound-guided fine-needle aspiration biopsy of thyroid nodules and multinodular goiters.Endocr. Pract.200410324224510.4158/EP.10.3.24215310533
    [Google Scholar]
  24. MittendorfE.A. TamarkinS.W. McHenryC.R. The results of ultrasound-guided fine-needle aspiration biopsy for evaluation of nodular thyroid disease.Surgery2002132464865410.1067/msy.2002.12754912407349
    [Google Scholar]
  25. GharibH. GoellnerJ.R. Fine-needle aspiration biopsy of the thyroid: an appraisal.Ann. Intern. Med.1993118428228910.7326/0003‑4819‑118‑4‑199302150‑000078420446
    [Google Scholar]
  26. AliS.Z. BalochZ.W. Cochand-PriolletB. SchmittF.C. VielhP. VanderLaanP.A. The 2023 bethesda system for reporting thyroid cytopathology.Thyroid20233391039104437427847
    [Google Scholar]
  27. MulitaF. IliopoulosF. TsilivigkosC. TchabashviliL. LiolisE. KaplanisC. Cancer rate of Bethesda category II thyroid nodules.Med Glas (Zenica)Online ahead of print202210.17392/1413‑21
    [Google Scholar]
  28. MulitaF. PlachouriM.K. LiolisE. VailasM. PanagopoulosK. MaroulisI. Patient outcomes following surgical management of thyroid nodules classified as Bethesda category III (AUS/FLUS).Endokrynol. Pol.202172214314410.5603/EP.a2021.001833749812
    [Google Scholar]
  29. HorvathE. MajlisS. RossiR. FrancoC. NiedmannJ.P. CastroA. DominguezM. An ultrasonogram reporting system for thyroid nodules stratifying cancer risk for clinical management.J. Clin. Endocrinol. Metab.20099451748175110.1210/jc.2008‑172419276237
    [Google Scholar]
  30. TesslerF.N. MiddletonW.D. GrantE.G. HoangJ.K. BerlandL.L. TeefeyS.A. CronanJ.J. BelandM.D. DesserT.S. FratesM.C. HammersL.W. HamperU.M. LangerJ.E. ReadingC.C. ScouttL.M. StavrosA.T. ACR Thyroid imaging, reporting and data system (TI-RADS): White Paper of the ACR TI-RADS Committee.J. Am. Coll. Radiol.201714558759510.1016/j.jacr.2017.01.04628372962
    [Google Scholar]
  31. LeeM.K. NaD.G. JooL. LeeJ.Y. HaE.J. KimJ.H. JungS.L. BaekJ.H. Standardized imaging and reporting for thyroid ultrasound: Korean society of thyroid radiology consensus statement and recommendation.Korean J. Radiol.2023241223010.3348/kjr.2022.089436606617
    [Google Scholar]
  32. LebbinkCA LinksTP CzarnieckaA DiasRP EliseiR IzattL Thyroid Association Guidelines for the management of pediatric thyroid nodules and differentiated thyroid carcinoma. Eur Thyroid J.2022116
    [Google Scholar]
  33. AsyaO. YumuşakhuyluA.C. EnverN. GündoğduY. AbuzaidG. İncazS. GündoğmuşC.A. ErgelenR. BağcıP. OysuÇ. A single-center multidisciplinary study analyzing thyroid nodule risk stratification by comparing the thyroid imaging reporting and data system (TI-RADS) and American thyroid association (ATA) risk of malignancy for thyroid nodules.Auris Nasus Larynx202350341041410.1016/j.anl.2022.08.00636064766
    [Google Scholar]
  34. YoonS.J. NaD.G. GwonH.Y. PaikW. KimW.J. SongJ.S. ShimM.S. Similarities and differences between thyroid imaging reporting and data systems.AJR Am. J. Roentgenol.20192132W76W8410.2214/AJR.18.2051030917027
    [Google Scholar]
  35. LiG. ZhangB. LiuJ. XiongY. The diagnostic efficacy and inappropriate biopsy rate of ACR TI-RADS and ATA guidelines for thyroid nodules in children and adolescents.Front. Endocrinol. (Lausanne)202314105294510.3389/fendo.2023.105294537051202
    [Google Scholar]
  36. DanielsK.E. ShafferA.D. GarbinS. SquiresJ.H. VaughanK.G. ViswanathanP. WitchelS.F. MollenK.P. YipL. MonacoS.E. DuvvuriU. SimonsJ.P. Validity of the American College of radiology thyroid imaging reporting and data system in children.Laryngoscope202313392394240110.1002/lary.3042536250584
    [Google Scholar]
  37. ZhaoH. LiuX. LeiB. ChengP. LiJ. WuY. MaZ. WeiF. SuH. Diagnostic performance of thyroid imaging reporting and data system (TI-RADS) alone and in combination with contrast-enhanced ultrasonography for the characterization of thyroid nodules.Clin. Hemorheol. Microcirc.20197219510610.3233/CH‑18045730320563
    [Google Scholar]
  38. ZhangG.L. YangY.P. ZhouH.L. DaiH.X. HuangX. LiuL.J. WangJ.X. LiH.J. LiangX. YuanQ. ZengY.H. XuX.H. Diagnostic efficacy of CEUS TI-RADS classification for benign and malignant thyroid nodules.Clin. Hemorheol. Microcirc.2025891274110.3233/CH‑20081639911118
    [Google Scholar]
  39. MaG. ChenL. WangY. LuoZ. ZengY. WangX. ShiZ. ZhangT. HongY. HuangP. Application of microvascular ultrasound-assisted thyroid imaging report and data system in thyroid nodule risk stratification.Insights Imaging202415123010.1186/s13244‑024‑01806‑539311997
    [Google Scholar]
  40. KimY.S. RhimH. TaeK. ParkD.W. KimS.T. Radiofrequency ablation of benign cold thyroid nodules: initial clinical experience.Thyroid200616436136710.1089/thy.2006.16.36116646682
    [Google Scholar]
  41. GarberoglioR. AlibertiC. AppetecchiaM. AttardM. BoccuzziG. BorasoF. BorrettaG. CarusoG. DeandreaM. FreddiM. GalloneG. GandiniG. GasparriG. GazzeraC. GhigoE. GrossoM. LimoneP. MaccarioM. MansiL. MormileA. NasiP.G. OrlandiF. PacchioniD. PacellaC.M. PalestiniN. PapiniE. PelizzoM.R. PiottoA. RagoT. RigantiF. RosatoL. RossettoR. ScarmozzinoA. SpieziaS. TestoriO. ValcaviR. VeltriA. VittiP. ZingrilloM. Radiofrequency ablation for thyroid nodules: which indications? The first Italian opinion statement.J. Ultrasound201518442343010.1007/s40477‑015‑0169‑y26550079
    [Google Scholar]
  42. RadzinaM. CantisaniV. RaudaM. NielsenM.B. EwertsenC. D’AmbrosioF. PrieditisP. SorrentiS. Update on the role of ultrasound guided radiofrequency ablation for thyroid nodule treatment.Int. J. Surg.201741Suppl. 1S82S9310.1016/j.ijsu.2017.02.01028506420
    [Google Scholar]
  43. YanL. LiX.Y. LiY. LuoY. Ultrasound-guided radiofrequency ablation versus thyroidectomy for the treatment of benign thyroid nodules in elderly patients: a propensity-matched cohort study.AJNR Am. J. Neuroradiol.202344669369910.3174/ajnr.A789037230539
    [Google Scholar]
  44. GaoX. YangY. WangY. HuangY. Efficacy and safety of ultrasound-guided radiofrequency, microwave and laser ablation for the treatment of T1N0M0 papillary thyroid carcinoma on a large scale: A systematic review and meta-analysis.Int. J. Hyperthermia2023401224471310.1080/02656736.2023.224471337604507
    [Google Scholar]
  45. FanK.Y. LohE.W. TamK.W. Efficacy of HIFU for the treatment of benign thyroid nodules: a systematic review and meta-analysis.Eur. Radiol.20233442310232210.1007/s00330‑023‑10253‑737792080
    [Google Scholar]
  46. MonpeyssenH. Ben HamouA. HegedüsL. GhanassiaÉ. JuttetP. PersichettiA. BizzarriG. BianchiniA. GuglielmiR. RaggiuntiB. AlamriA. MachuronF. TavernaD. BarbaroD. PapiniE. High-intensity focused ultrasound (HIFU) therapy for benign thyroid nodules: a 3-year retrospective multicenter follow-up study.Int. J. Hyperthermia20203711301130910.1080/02656736.2020.184679533222569
    [Google Scholar]
  47. SwietlikJ.F. MauchS.C. KnottE.A. ZlevorA. LongoK.C. ZhangX. XuZ. LaesekeP.F. LeeF.T.Jr ZiemlewiczT.J. Noninvasive thyroid histotripsy treatment: proof of concept study in a porcine model.Int. J. Hyperthermia202138179880410.1080/02656736.2021.192276234037501
    [Google Scholar]
  48. SunJ. LiC. LuZ. HeM. ZhaoT. LiX. GaoL. XieK. LinT. SuiJ. XiQ. ZhangF. NiX. TNSNet: Thyroid nodule segmentation in ultrasound imaging using soft shape supervision.Comput. Methods Programs Biomed.202221510660010.1016/j.cmpb.2021.10660034971855
    [Google Scholar]
  49. ZhangQ. ZhangS. PanY. SunL. LiJ. QiaoY. ZhaoJ. WangX. FengY. ZhaoY. ZhengZ. YangX. LiuL. QinC. ZhaoK. LiuX. LiC. ZhangL. YangC. ZhuoN. ZhangH. LiuJ. GaoJ. DiX. MengF. ZhangL. WangY. DuanY. ShenH. LiY. YangM. YangY. XinX. WeiX. ZhouX. JinR. ZhangL. WangX. SongF. ZhengX. GaoM. ChenK. LiX. Deep learning to diagnose Hashimoto’s thyroiditis from sonographic images.Nat. Commun.2022131375910.1038/s41467‑022‑31449‑335768466
    [Google Scholar]
  50. TangQ. HeL-T. ChenF-J. ZhouD-Z. ZhangY-X. LiY-S. TangM.X. TangJ-X. LiuS. ChenZ-J. A comparison of the performances of artificial intelligence system and radiologists in the ultrasound diagnosis of thyroid nodules.Curr. Med. Imaging202218131369137710.2174/157340561866622042213225135466880
    [Google Scholar]
  51. ZhangQ. ZhangS. LiJ. PanY. ZhaoJ. FengY. ZhaoY. WangX. ZhengZ. YangX. LiuL. QinC. ZhaoK. LiuX. LiC. ZhangL. YangC. ZhuoN. ZhangH. LiuJ. GaoJ. DiX. MengF. JiW. YangM. XinX. WeiX. JinR. ZhangL. WangX. SongF. ZhengX. GaoM. ChenK. LiX. Improved diagnosis of thyroid cancer aided with deep learning applied to sonographic text reports: a retrospective, multi-cohort, diagnostic study.Cancer Biol. Med.202119573374110.20892/j.issn.2095‑3941.2020.050934491007
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056396607250811115439
Loading
/content/journals/cmir/10.2174/0115734056396607250811115439
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test