Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Introduction

This study aimed to investigate nerve fiber bundle damage associated with spinocerebellar degeneration, a dominant inherited neurological disorder, using magnetic resonance imaging (MRI) with diffusion tensor imaging (DTI).

Methods

Four cases of spinocerebellar degeneration and ten matched healthy subjects were retrospectively enrolled. DTI software was used for processing and analysis.

Results

All patients had an abnormal spinocerebellar ataxia (SCA) type 3 gene mutation, with cerebellar and brainstem atrophy, a decreased signal in the pons and projection fibers. Significant interruption and destruction were revealed in the midline of the cerebellar peduncle, cerebellar arcuate fibers, and the spinothalamic and spinocerebellar tracts. Significant ( <0.05) decreases were detected in FA values in the cerebellar peduncle (0.51±0.04 0.68±0.02), cerebellar arcuate fibers (0.37±0.08 0.51±0.05), spinothalamic tract (0.42±0.03 0.49±0.05), and spinocerebellar tract (0.44±0.06 0.52±0.06) compared with healthy controls. Compared with healthy controls, significant ( <0.05) increases were detected in ADC values in the cerebellar peduncle (0.84±0.11 0.67±0.03), cerebellar arcuate fibers (0.87±0.12 0.66±0.05), spinothalamic tract (0.89±0.13 0.70±0.03) within the brainstem, and spinocerebellar tract (0.79±0.07 0.69±0.06).

Discussion

The MRI DTI technique provides sufficient information for studying spinocerebellar degeneration and for conducting further research on its etiology and diagnosis. Some limitations were present, including the retrospective and single-center study design, a limited patient sample, and enrollment of only Chinese patients.

Conclusion

The MRI DTI technique can clearly demonstrate the degree of damage to nerve fiber bundles in the cerebellum and the adjacent relationship between the fiber bundles entering and exiting the cerebellum in patients with spinocerebellar degeneration.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056385511250912062114
2025-09-23
2025-11-08
Loading full text...

Full text loading...

/deliver/fulltext/cmir/21/1/CMIR-21-E15734056385511.html?itemId=/content/journals/cmir/10.2174/0115734056385511250912062114&mimeType=html&fmt=ahah

References

  1. KaramazovovaS. MatuskovaV. IsmailZ. VyhnalekM. Neuropsychiatric symptoms in spinocerebellar ataxias and Friedreich ataxia.Neurosci. Biobehav. Rev.202315010520510.1016/j.neubiorev.2023.10520537137435
    [Google Scholar]
  2. MandelliM.L. De SimoneT. MinatiL. BruzzoneM.G. MariottiC. FancelluR. SavoiardoM. GrisoliM. Diffusion tensor imaging of spinocerebellar ataxias types 1 and 2.AJNR Am. J. Neuroradiol.200728101996200010.3174/ajnr.A071617998418
    [Google Scholar]
  3. WangP.S. WuY.T. WangT.Y. WuH.M. SoongB.W. JaoC.W. Supratentorial and infratentorial lesions in spinocerebellar ataxia type 3.Front. Neurol.20201112410.3389/fneur.2020.0012432194495
    [Google Scholar]
  4. ArgyropoulosG.P.D. van DunK. AdamaszekM. LeggioM. MantoM. MasciulloM. MolinariM. StoodleyC.J. Van OverwalleF. IvryR.B. SchmahmannJ.D. The cerebellar cognitive affective/schmahmann syndrome: A task force paper.Cerebellum202019110212510.1007/s12311‑019‑01068‑831522332
    [Google Scholar]
  5. Al-ArabN. HannounS. White matter integrity assessment in spinocerebellar ataxia type 2 (SCA2) patients.Clin. Radiol.2024791677210.1016/j.crad.2023.10.02037953094
    [Google Scholar]
  6. AcarD. OzcelikE.U. BaykanB. BebekN. DemiralpT. BayramA. Diffusion tensor imaging in photosensitive and nonphotosensitive juvenile myoclonic epilepsy.Seizure2024115364310.1016/j.seizure.2023.12.01538183826
    [Google Scholar]
  7. JangW.H. LeeS.H. Diffusion tensor imaging of the brain in children with sensory processing disorder: A review.J. Neuroimaging202434216717810.1111/jon.1318638183169
    [Google Scholar]
  8. SmithS.M. JenkinsonM. WoolrichM.W. BeckmannC.F. BehrensT.E.J. Johansen-BergH. BannisterP.R. De LucaM. DrobnjakI. FlitneyD.E. NiazyR.K. SaundersJ. VickersJ. ZhangY. De StefanoN. BradyJ.M. MatthewsP.M. Advances in functional and structural MR image analysis and implementation as FSL.Neuroimage200423Suppl. 1S208S21910.1016/j.neuroimage.2004.07.05115501092
    [Google Scholar]
  9. O’HearnE. HolmesS.E. MargolisR.L. Spinocerebellar ataxia type 12.Handb. Clin. Neurol.201210353554710.1016/B978‑0‑444‑51892‑7.00034‑621827912
    [Google Scholar]
  10. ZhangX. MaJ. ZhangX. Diffusion tensor imaging of spinocerebellar ataxia type 12.Med. Sci. Monit.2014201783179110.12659/MSM.89110425274186
    [Google Scholar]
  11. GuerriniL. LolliF. GinestroniA. BelliG. Della NaveR. TessaC. ForestiS. CosottiniM. PiacentiniS. SalviF. PlasmatiR. De GrandisD. SicilianoG. FillaA. MascalchiM. Brainstem neurodegeneration correlates with clinical dysfunction in SCA1 but not in SCA2. A quantitative volumetric, diffusion and proton spectroscopy MR study.Brain200412781785179510.1093/brain/awh20115240431
    [Google Scholar]
  12. GiuffridaS. SaponaraR. RestivoD.A. Trovato SalinaroA. TomarchioL. PugliaresP. FabbriG. MaccagnanoC. Supratentorial atrophy in spinocerebellar ataxia type 2: MRI study of 20 patients.J. Neurol.1999246538338810.1007/s00415005036810399871
    [Google Scholar]
  13. KlockgetherT. SkalejM. WedekindD. LuftA.R. WelteD. SchulzJ.B. AbeleM. BürkK. LacconeF. BriceA. DichgansJ. Autosomal dominant cerebellar ataxia type I. MRI-based volumetry of posterior fossa structures and basal ganglia in spinocerebellar ataxia types 1, 2 and 3.Brain199812191687169310.1093/brain/121.9.16879762957
    [Google Scholar]
  14. MercadilloR.E. GalvezV. DíazR. Hernández-CastilloC.R. Campos-RomoA. BollM.C. PasayeE.H. Fernandez-RuizJ. Parahippocampal gray matter alterations in Spinocerebellar Ataxia Type 2 identified by voxel based morphometry.J. Neurol. Sci.20143471-2505810.1016/j.jns.2014.09.01825263602
    [Google Scholar]
  15. D’AgataF. CaroppoP. BoghiA. CoriascoM. CaglioM. BaudinoB. SaccoK. CaudaF. GedaE. BerguiM. GeminianiG. BradacG.B. OrsiL. MortaraP. Linking coordinative and executive dysfunctions to atrophy in spinocerebellar ataxia 2 patients.Brain Struct. Funct.2011216327528810.1007/s00429‑011‑0310‑421461742
    [Google Scholar]
  16. MascalchiM. ToschiN. GiannelliM. GinestroniA. Della NaveR. NicolaiE. BianchiA. TessaC. SalvatoreE. AielloM. SoricelliA. DiciottiS. Progression of microstructural damage in spinocerebellar ataxia type 2: A longitudinal DTI study.AJNR Am. J. Neuroradiol.20153661096110110.3174/ajnr.A434325882284
    [Google Scholar]
  17. Hernandez-CastilloC.R. GalvezV. MercadilloR. DiazR. Campos-RomoA. Fernandez-RuizJ. Extensive white matter alterations and its correlations with ataxia severity in SCA 2 patients.PLoS One2015108013544910.1371/journal.pone.013544926263162
    [Google Scholar]
  18. StezinA. BhardwajS. KhokharS. HegdeS. JainS. BharathR.D. SainiJ. PalP.K. In vivo microstructural white matter changes in early spinocerebellar ataxia 2.Acta Neurol. Scand.2021143332633210.1111/ane.1335933029780
    [Google Scholar]
  19. RübU. SchölsL. PaulsonH. AuburgerG. KermerP. JenJ.C. SeidelK. KorfH.W. DellerT. Clinical features, neurogenetics and neuropathology of the polyglutamine spinocerebellar ataxias type 1, 2, 3, 6 and 7.Prog. Neurobiol.2013104386610.1016/j.pneurobio.2013.01.00123438480
    [Google Scholar]
  20. KoeppenA.H. The neuropathology of the adult cerebellum.Handb. Clin. Neurol.201815412914910.1016/B978‑0‑444‑63956‑1.00008‑429903436
    [Google Scholar]
  21. WanN. ChenZ. WanL. TangB. JiangH. MR imaging of SCA3/MJD.Front. Neurosci.20201474910.3389/fnins.2020.0074932848545
    [Google Scholar]
  22. ParkerJ.A. MerchantS.H. Attaripour-IsfahaniS. ChoH.J. McGurrinP. BrooksB.P. La SpadaA.R. HallettM. HurynL.A. HorovitzS.G. In vivo assessment of neurodegeneration in Spinocerebellar Ataxia type 7.Neuroimage Clin.20212910256110.1016/j.nicl.2021.10256133516934
    [Google Scholar]
  23. YeC. YangZ. YingS.H. PrinceJ.L. Segmentation of the cerebellar peduncles using a random forest classifier and a multi-object geometric deformable model: Application to spinocerebellar ataxia type 6.Neuroinformatics201513336738110.1007/s12021‑015‑9264‑725749985
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056385511250912062114
Loading
/content/journals/cmir/10.2174/0115734056385511250912062114
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test