Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Objective

This study aimed to analyze the composition of renal staghorn calculi and their characteristics using spectral CT.

Methods

This study enrolled 111 cases of renal staghorn calculi from 94 patients (48 males and 46 females, aged 28–76 years; median age: 56 years). Using spectral CT, average Zeff and CT values were analyzed. The water/iodine-based images were generated by the material separation module. All stones were detected by FTIR spectroscopy.

Results

111 cases of renal staghorn calculi included 53 cases of single composition (47.8%) and 58 cases of mixed composition (52.2%). In staghorn calculi of a single composition, urate (23 cases) and calcium oxalate monohydrate (16 cases) were more prevalent than struvite (5 cases) and brushite (5 cases). Mixed compositions included metabolic-metabolic (36 cases, 62.1%), metabolic-infectious (14 cases, 24.1%), and infectious-infectious (8 cases, 13.8%) cases, respectively. The average Zeff values showed some characteristics of carbapatite and urate. However, average Zeff and CT values had many overlappings among other compositions. All stones appeared homogeneous in water-based images. In iodine-based images, calcium oxalate monohydrate displayed homogeneous high density, but struvite and brushite showed heterogeneous high density. Single compositions of carbapatite, calcium oxalate monohydrate, and cystine exhibited homogeneous high density, similar to mixed compositions of carbapatite and calcium oxalate monohydrate. Furthermore, urate demonstrated homogeneous low density. Moreover, the mixture of struvite and brushite/urate showed heterogeneous high density.

Conclusion

In staghorn calculi of a single composition, the metabolic type was common, while metabolic-metabolic and metabolic-infectious types frequently occurred in staghorn calculi with mixed compositions. Except for average Zeff values, water-iodine material separation performed an important auxiliary function in differentiating stones’ compositions using spectral CT.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056389587250417055946
2025-01-01
2025-10-30
Loading full text...

Full text loading...

/deliver/fulltext/cmir/21/1/CMIR-21-E15734056389587.html?itemId=/content/journals/cmir/10.2174/0115734056389587250417055946&mimeType=html&fmt=ahah

References

  1. RassweilerJ.J. RennerC. EisenbergerF. The management of complex renal stones.BJU Int.200086891992810.1046/j.1464‑410x.2000.00906.x11069428
    [Google Scholar]
  2. TerryR.S. PremingerG.M. Metabolic evaluation and medical management of staghorn calculi.Asian J. Urol.20207212212910.1016/j.ajur.2019.12.00732257805
    [Google Scholar]
  3. DesaiM.R. MishraS. BhattuA.S. SabnisR.B. Staghorn classification: Platform for morphometry assessment.Indian J. Urol.2014301808310.4103/0970‑1591.12421224497688
    [Google Scholar]
  4. TorricelliF.C.M. MongaM. Staghorn renal stones: What the urologist needs to know.Int. Braz J Urol202046692793310.1590/s1677‑5538.ibju.2020.99.0732213203
    [Google Scholar]
  5. PremingerG.M. AssimosD.G. LingemanJ. NakadaS. PearleM.S. WolfJ.S.Jr Chapter 1: AUA guideline on management of staghorn calculi: Diagnosis and treatment recommendations.J. Urol.200517361991200010.1097/01.ju.0000161171.67806.2a15879803
    [Google Scholar]
  6. DiriA. DiriB. Management of staghorn renal stones.Ren. Fail.201840135736210.1080/0886022X.2018.145930629658394
    [Google Scholar]
  7. WangJ.S. XiaP.F. MaM.N. LiY. GengT.T. ZhangY.B. TuZ.Z. JiangL. ZhouL.R. ZhangB.F. TongW.W. ShanZ. LiuG. YangK. PanA. Trends in the prevalence of metabolically healthy obesity among US adults, 1999-2018.JAMA Netw. Open202363e23214510.1001/jamanetworkopen.2023.214536892842
    [Google Scholar]
  8. BrainE. GeraghtyR.M. CookP. RoderickP. SomaniB. Risk of UTI in kidney stone formers: A matched-cohort study over a median follow-up of 19 years.World J. Urol.20213983095310110.1007/s00345‑020‑03564‑733403436
    [Google Scholar]
  9. KleinI. Gutiérrez-AcevesJ. Preoperative imaging in staghorn calculi, planning and decision making in management of staghorn calculi.Asian J. Urol.202072879310.1016/j.ajur.2019.07.00232257800
    [Google Scholar]
  10. XiangH ChanM BrownV Systematic review and meta-analysis of the diagnostic accuracy of low-dose computed tomography of the kidneys, ureters and bladder for urolithiasis.J Med Imaging Radiat Oncol201761558259010.1111/1754‑9485.1258728139077
    [Google Scholar]
  11. NestlerT. NestlerK. NeisiusA. IsbarnH. NetschC. WaldeckS. SchmelzH.U. RufC. Diagnostic accuracy of third-generation dual-source dual-energy CT: A prospective trial and protocol for clinical implementation.World J. Urol.201937473574110.1007/s00345‑018‑2430‑430076456
    [Google Scholar]
  12. LiX. WangL.P. OuL.L. HuangX.Y. ZengQ.S. WuW.Q. Revolution spectral CT for urinary stone with a single/mixed composition in vivo: A large sample analysis.World J. Urol.20213993631364210.1007/s00345‑021‑03597‑633495865
    [Google Scholar]
  13. MussmannB. HardyM. JungH. DingM. OstherP.J. GraumannO. Can dual energy CT with fast kV-switching determine renal stone composition accurately?Acad. Radiol.202128333333810.1016/j.acra.2020.02.00732217056
    [Google Scholar]
  14. XiaQ. ZhaoZ. LiC. HaoX. DunW. Application of a self-made equipment for patient positioning during percutaneous nephroscopy in the oblique-supine position.Urol. Int.20191031899410.1159/00049958430965347
    [Google Scholar]
  15. TürkC. PetříkA. SaricaK. SeitzC. SkolarikosA. StraubM. KnollT. EAU guidelines on diagnosis and conservative management of urolithiasis.Eur. Urol.201669346847410.1016/j.eururo.2015.07.04026318710
    [Google Scholar]
  16. HealyK.A. OganK. Pathophysiology and management of infectious staghorn calculi.Urol. Clin. North Am.200734336337410.1016/j.ucl.2007.05.00617678986
    [Google Scholar]
  17. WijayarathnaK.S.N. WeerasinghaG.G A P. WeligamageA.S. ChandrajithR. AbeygunasekeraA.M. Infrared spectroscopic analysis of staghorn calculi obtained after open renal surgery in a urology unit of Sri Lanka.Ceylon Med. J.2016612747610.4038/cmj.v61i2.828827423749
    [Google Scholar]
  18. ViprakasitD.P. SawyerM.D. HerrellS.D. MillerN.L. Changing composition of staghorn calculi.J. Urol.201118662285229010.1016/j.juro.2011.07.08922014820
    [Google Scholar]
  19. IqbalM.W. YoussefR.F. NeisiusA. KuntzN. HannaJ. FerrandinoM.N. PremingerG.M. LipkinM.E. Contemporary management of struvite stones using combined endourologic and medical treatment: Predictors of unfavorable clinical outcome.J. Endourol.201630777177710.1089/end.2013.025724251429
    [Google Scholar]
  20. GanpuleA.P. VijayakumarM. MalpaniA. DesaiM.R. Percutaneous nephrolithotomy (PCNL) a critical review.Int. J. Surg.201636Pt D66066410.1016/j.ijsu.2016.11.02827856356
    [Google Scholar]
  21. AnastasiadisA. OnalB. ModiP. TurnaB. DuvdevaniM. TimoneyA. WolfJ.S.Jr De La RosetteJ. Impact of stone density on outcomes in percutaneous nephrolithotomy (PCNL): An analysis of the clinical research office of the endourological society (CROES) pcnl global study database.Scand. J. Urol.201347650951410.3109/21681805.2013.80326123781902
    [Google Scholar]
  22. GuglielmettiG.B. DanilovicA. TorricelliF.C.M. CoelhoR.F. MazzucchiE. SrougiM. Predicting calyceal access for percutaneous nephrolithotomy with computed tomography multiplanar reconstruction.Clinics201368689289510.6061/clinics/2013(06)2723778484
    [Google Scholar]
  23. KoopmanS.G. FuchsG. Management of stones associated with intrarenal stenosis: Infundibular stenosis and caliceal diverticulum.J. Endourol.201327121546155010.1089/end.2013.018624251427
    [Google Scholar]
  24. GoodsittM.M. ChristodoulouE.G. LarsonS.C. Accuracies of the synthesized monochromatic CT numbers and effective atomic numbers obtained with a rapid kVp switching dual energy CT scanner.Med. Phys.20113842222223210.1118/1.356750921626956
    [Google Scholar]
  25. BotsikasD. HansenC. StefanelliS. BeckerC.D. MontetX. Urinary stone detection and characterisation with dual-energy CT urography after furosemide intravenous injection: Preliminary results.Eur. Radiol.201424370971410.1007/s00330‑013‑3033‑524081647
    [Google Scholar]
  26. JindalT. MandalS. SonarP. KamalM. GhoshN. KarmakarD. Analysis of urinary stone composition in Eastern India by X-ray diffraction crystallography.Adv. Biomed. Res.20143120310.4103/2277‑9175.14231325337533
    [Google Scholar]
  27. MenardO. MurezT. BertrandJ. DailleA.M. CabaniolsL. RobertM. ThuretR. Epidemiology of urolithiasis in south of France: A retrospective monocentric study.Prog. Urol.201626633934510.1016/j.purol.2016.04.00527233891
    [Google Scholar]
  28. TaillyT. LarishY. NadeauB. VioletteP. GlickmanL. Olvera-PosadaD. AleneziH. AmannJ. DenstedtJ. RazviH. Combining mean and standard deviation of hounsfield unit measurements from preoperative CT allows more accurate prediction of urinary stone composition than mean hounsfield units alone.J. Endourol.201630445345910.1089/end.2015.020926597058
    [Google Scholar]
  29. RompsaithongU. JongjitareeK. KorpraphongP. WoranisarakulV. TaweemonkongsapT. NualyongC. ChotikawanichE. Characterization of renal stone composition by using fast kilovoltage switching dual-energy computed tomography compared to laboratory stone analysis: A pilot study.Abdom. Radiol.20194431027103210.1007/s00261‑018‑1787‑630259102
    [Google Scholar]
  30. OgawaN. SatoS. IdaK. KatoK. AriyoshiY. WadaK. NasuY. KanazawaS. Evaluation of urinary stone composition and differentiation between urinary stones and phleboliths using single-source dual-energy computed tomography.Acta Med. Okayama2017712919610.18926/AMO/5497628420889
    [Google Scholar]
  31. SheirK.Z. MansourO. MadboulyK. ElsobkyE. Abdel-KhalekM. Determination of the chemical composition of urinary calculi by noncontrast spiral computerized tomography.Urol. Res.20053329910410.1007/s00240‑004‑0454‑215645229
    [Google Scholar]
  32. KulkarniN.M. EisnerB.H. PinhoD.F. JoshiM.C. KambadakoneA.R. SahaniD.V. Determination of renal stone composition in phantom and patients using single-source dual-energy computed tomography.J. Comput. Assist. Tomogr.2013371374510.1097/RCT.0b013e3182720f6623321831
    [Google Scholar]
  33. CannellaR. ShahaitM. FurlanA. ZhangF. BigleyJ.D. AverchT.D. BorhaniA.A. Efficacy of single-source rapid kV-switching dual-energy CT for characterization of non-uric acid renal stones: A prospective ex vivo study using anthropomorphic phantom.Abdom. Radiol.20204541092109910.1007/s00261‑019‑02164‑331385007
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056389587250417055946
Loading
/content/journals/cmir/10.2174/0115734056389587250417055946
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test