Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Aim

The study investigates the creation and assessment of Machine Learning (ML) models using different classifiers such as Support Vector Machine (SVM), logistic regression, decision tree, k-nearest neighbour (kNN), and Artificial Neural Network (ANN) for the automated identification of tuberculosis (TB) from chest X-ray (CXR) images.

Background

As a persistent worldwide health concern, TB requires early detection for effective treatment and control of the infection. The differential diagnosis of TB is a challenge, even for experienced radiologists. With the use of automated processing of CXR images which are reasonable and frequently used for TB diagnosis, employing Artificial Intelligence (AI) techniques provides novel possibilities.

Objective

The objective of the study was to identify respiratory disorders, radiologists devote a lot of time reviewing each of the CXR images. As such, they can identify the type of disease using automated methods based on AI algorithms. This work advances the diagnosis of TB via machine learning, which may result in early treatment options and enhanced outcomes for patients.

Methods

The disease was classified using distinct parameters like edge, shape, and Gray Level Difference Statistics (GLDS) on splitting of the dataset at 70:30 and 80:20.

Results

It was observed that authors attained 93.5% accuracy using SVM with linear kernel for a 70:30 data split considering hybrid parameters. The comparison was made considering different feature extraction techniques, different dataset splitting, existing work, and another dataset.

Conclusion

The designed model using SVM, decision tree, kNN, ANN, and logistic regression was compared using other state-of-the-art techniques, other datasets, different feature extraction techniques, and different splitting of data. AI has great promise for enhancing tuberculosis detection, which will ultimately lead to an earlier diagnosis and improved disease management.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056343819250307040956
2025-04-17
2025-08-24
The full text of this item is not currently available.

References

  1. RahlwesK.C. DiasB.R.S. CamposP.C. Alvarez-ArguedasS. ShilohM.U. Pathogenicity and virulence of Mycobacterium tuberculosis.Taylor and Francis Ltd.202310.1080/21505594.2022.2150449
    [Google Scholar]
  2. Self-study modules on tuberculosis transmission and pathogenesis of tuberculosis’.Available from: https://www.cdc.gov/tb/hcp/education/self-study-modules-on-tuberculosis.html
  3. KashyapV.K. GuptaR.K. ShrivastavaR. SrivastavaB.S. SrivastavaR. ParaiM.K. SinghP. BeraS. PandaG. In vivo activity of thiophene-containing trisubstituted methanes against acute and persistent infection of non-tubercular Mycobacterium fortuitum in a murine infection model.J. Antimicrob. Chemother.20126751188119710.1093/jac/dkr59222311937
    [Google Scholar]
  4. 2024 Global tuberculosis report.Available from: https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2024
  5. HriziO. GasmiK. Ben LtaifaI. AlshammariH. KaramtiH. KrichenM. Ben AmmarL. MahmoodM.A. Tuberculosis disease diagnosis based on an optimized machine learning model.J. Healthc. Eng.2022202211310.1155/2022/895024335494520
    [Google Scholar]
  6. ZhangD. IslamM.M. LuG. A review on automatic image annotation techniques.Pattern Recognit.201245134636210.1016/j.patcog.2011.05.013
    [Google Scholar]
  7. YangN.J. ChiuI.M. Bacterial signaling to the nervous system through toxins and metabolites.J. Mol. Biol.2017429558760510.1016/j.jmb.2016.12.02328065740
    [Google Scholar]
  8. KronerG.M. WolfeM.B. FreddolinoP.L. Escherichia coli Lrp regulates one-third of the genome via direct, cooperative, and indirect routes.J. Bacteriol.20192013e00411-1810.1128/JB.00411‑1830420454
    [Google Scholar]
  9. ZhangY. YangJ. BaiG. Regulation of the CRISPR-associated genes by Rv2837c (CnpB) via an orn-like activity in tuberculosis complex mycobacteria.J Bacteriol20182008e00743-1710.1128/JB.00743‑17
    [Google Scholar]
  10. YangJ. ZhangL. QiaoW. LuoY. Mycobacterium tuberculosis: Pathogenesis and therapeutic targets.John Wiley and Sons Inc202310.1002/mco2.353
    [Google Scholar]
  11. KhandelwalA.S.P.K.A.R.S.I. Bioinformatics database resources.Biotechnology: Concepts, Methodologies, Tools, and ApplicationsIGI Global Scientific Publishing20198411910.4018/978‑1‑5225‑8903‑7.ch004
    [Google Scholar]
  12. ChauhanR.S. ChanumoluS.K. RoutC. ShrivastavaR. Can mycobacterial genomics generate novel targets as speed-breakers against the race for drug resistance.Curr. Pharm. Des.201320274319434510.2174/138161281966613111816542724245760
    [Google Scholar]
  13. DuongL.T. LeN.H. TranT.B. NgoV.M. NguyenP.T. Detection of tuberculosis from chest X-ray images: Boosting the performance with vision transformer and transfer learning.Expert Syst. Appl.202118411551910.1016/j.eswa.2021.115519
    [Google Scholar]
  14. YeQ. ChaiX. JiangD. YangL. ShenC. ZhangX. LiD. CaoD. HouT. Identification of active molecules against Mycobacterium tuberculosis through machine learning.Brief. Bioinform.2021225bbab06810.1093/bib/bbab06833822874
    [Google Scholar]
  15. KoteiE. ThirunavukarasuR. Ensemble technique coupled with deep transfer learning framework for automatic detection of tuberculosis from chest x-ray radiographs.Healthcare20221011233510.3390/healthcare1011233536421659
    [Google Scholar]
  16. UroojS. SuchitraS. KrishnasamyL. SharmaN. PathakN. Stochastic learning-based artificial neural network model for an automatic tuberculosis detection system using chest x-ray images.IEEE Access20221010363210364310.1109/ACCESS.2022.3208882
    [Google Scholar]
  17. AminS.U. TajS. HussainA. SeoS. An automated chest X-ray analysis for COVID-19, tuberculosis, and pneumonia employing ensemble learning approach.Biomed. Signal Process. Control20248710540810.1016/j.bspc.2023.105408
    [Google Scholar]
  18. PriyonoE. Prediction of tuberculosis patients with machine learning algorithms.IPI: Sci. J. Informatics Res. Learn.20249423492356
    [Google Scholar]
  19. SitanggangD. SimangunsongL. SundahG.F. HutahaeanR. IndrenI. Application of data mining for tuberculosis disease classification using K-nearest neighbor.Sisfokom J.202413331832210.32736/sisfokom.v13i3.2218
    [Google Scholar]
  20. AlbanhawyM.M. KhalilA. MoustafaH. Improving life-threatening lung diseases classification using hybrid smote-enn with assorted machine learning classifiers.Int. J. of Telecommun.2024040211710.21608/ijt.2024.293555.1056
    [Google Scholar]
  21. AliR. Diagnosis of pulmonary tuberculosis by posterior-anterior lung X-ray.J. Comput. Biomed. Informatics2024701184192
    [Google Scholar]
  22. HogewegL. SánchezC.I. MaduskarP. PhilipsenR. StoryA. DawsonR. TheronG. DhedaK. Peters-BaxL. van GinnekenB. Automatic detection of tuberculosis in chest radiographs using a combination of textural, focal, and shape abnormality analysis.IEEE Trans. Med. Imaging201534122429244210.1109/TMI.2015.240576125706581
    [Google Scholar]
  23. MelendezJ. van GinnekenB. MaduskarP. PhilipsenR.H.H.M. ReitherK. BreuningerM. AdetifaI.M.O. MaaneR. AylesH. SánchezC.I. A novel multiple-instance learning-based approach to computer-aided detection of tuberculosis on chest X-rays.IEEE Trans. Med. Imaging201534117919210.1109/TMI.2014.235053925163057
    [Google Scholar]
  24. FengB. ChenX. ChenY. LuS. LiuK. LiK. LiuZ. HaoY. LiZ. ZhuZ. YaoN. LiangG. ZhangJ. LongW. LiuX. Solitary solid pulmonary nodules: A CT-based deep learning nomogram helps differentiate tuberculosis granulomas from lung adenocarcinomas.Eur. Radiol.202030126497650710.1007/s00330‑020‑07024‑z32594210
    [Google Scholar]
  25. SinghS. KumarM. KumarA. KumarS. SankhwarS.N. Primary renal tuberculosis presented as giant cyst at lower pole of kidney.Int. J. Life-Sci. Sci. Res.2017341148115010.21276/ijlssr.2017.3.4.8
    [Google Scholar]
  26. PartiR.P.S. ShrivastavaR. SrivastavaS. SubramanianA.R. RoyR. SrivastavaB.S. SrivastavaR. A transposon insertion mutant of Mycobacterium fortuitum attenuated in virulence and persistence in a murine infection model that is complemented by Rv3291c of Mycobacterium tuberculosis.Microb. Pathog.2008455-637037610.1016/j.micpath.2008.08.00818930129
    [Google Scholar]
  27. KhammissaRAG. Primary oral tuberculosis as an indicator of HIV Infection.Pathol. Res. Int.201114
    [Google Scholar]
  28. SrivastavaS. SinhaA. KamalaR. SrivastavaA. Primary tuberculosis of the oral cavity.Indian J. Dent. Res.201122683583810.4103/0970‑9290.9468022484880
    [Google Scholar]
  29. Oloko-ObaM. ViririS. A systematic review of deep learning techniques for tuberculosis detection from chest radiograph.Front. Med.2022983051510.3389/fmed.2022.830515
    [Google Scholar]
  30. LeeJ.H. ParkS. HwangE.J. GooJ.M. LeeW.Y. LeeS. KimH. AndrewsJ.R. ParkC.M. Deep learning–based automated detection algorithm for active pulmonary tuberculosis on chest radiographs: Diagnostic performance in systematic screening of asymptomatic individuals.Eur. Radiol.20213121069108010.1007/s00330‑020‑07219‑432857202
    [Google Scholar]
  31. SegatoA. MarzulloA. CalimeriF. De MomiE. Artificial intelligence for brain diseases: A systematic review.APL Bioeng.20204404150310.1063/5.001169733094213
    [Google Scholar]
  32. NaidooJ. ShelmerdineS.C. -CharcapeC.F.U. SodhiA.S. Artificial intelligence in Paediatric tuberculosis.Pediatr. Radiol.20235391733174510.1007/s00247‑023‑05606‑936707428
    [Google Scholar]
  33. SalauA.O. JainS. Adaptive diagnostic machine learning technique for classification of cell decisions for AKT protein.Inform. Med. Unlocked20212310051110051110.1016/j.imu.2021.100511
    [Google Scholar]
  34. SaraZ.S.L. Chapter 46 literature review of deep learning for tuberculosis based on chest imaging.International Conference on Advanced Intelligent Systems for Sustainable DevelopmentSpringer Science and Business Media LLC, 2023, pp. 515–520.
    [Google Scholar]
  35. SuárezI. FüngerS. M. RademacherJ. FätkenheuerG. KrögerS. RybnikerJ. Diagnosis and therapy of tuberculosisDeutscher Arzte-Verlag GmbH201910.3238/arztebl.2019.0729
    [Google Scholar]
  36. MelendezJ. van GinnekenB. MaduskarP. PhilipsenR.H.H.M. AylesH. SanchezC.I. On combining multiple-instance learning and active learning for computer-aided detection of tuberculosis.IEEE Trans. Med. Imaging20163541013102410.1109/TMI.2015.250567226660889
    [Google Scholar]
  37. TalatA. KhanA.U. Artificial intelligence as a smart approach to develop antimicrobial drug molecules: A paradigm to combat drug-resistant infections.Drug Discov. Today202328410349110.1016/j.drudis.2023.10349136646245
    [Google Scholar]
  38. Orjuela-CañónA.D. JutinicoA.L. AwadC. VergaraE. PalenciaA. Machine learning in the loop for tuberculosis diagnosis support.Front. Public Health20221087694910.3389/fpubh.2022.87694935958865
    [Google Scholar]
  39. ZamanK. Tuberculosis: A global health problem.J. Health Popul. Nutr.201028211111310.3329/jhpn.v28i2.487920411672
    [Google Scholar]
  40. K.-MM. Tuberculosis.Textbook of Respiratory Medicine.6th ed MurrayJ.A.N.J.F. CaliforniaElsevier20161593628
    [Google Scholar]
  41. ZhanY. WangY. ZhangW. YingB. WangC. Diagnostic accuracy of the artificial intelligence methods in medical imaging for pulmonary tuberculosis: A systematic review and meta-analysis.J. Clin. Med.202212130310.3390/jcm1201030336615102
    [Google Scholar]
  42. AlbuquerqueV.V.S. KumarN.P. FukutaniK.F. VasconcelosB. ArriagaM.B. Silveira-MattosP.S. BabuS. AndradeB.B. Plasma levels of C-reactive protein, matrix metalloproteinase-7 and lipopolysaccharide-binding protein distinguish active pulmonary or extrapulmonary tuberculosis from uninfected controls in children.Cytokine201912315477310.1016/j.cyto.2019.15477331299414
    [Google Scholar]
  43. HuX. WangJ. JuY. ZhangX. QimanguliW. LiC. YueL. TuohetaerbaikeB. LiY. WenH. ZhangW. ChenC. YangY. WangJ. ChenF. X. et al Hu Combining metabolome and clinical indicators with machine learning provides some promising diagnostic markers to precisely detect smear-positive/negative pulmonary tuberculosis.BMC Infect. Dis.202222170710.1186/s12879‑022‑07694‑836008772
    [Google Scholar]
  44. AhmadR. XieL. PyleM. SuarezM.F. BrogerT. SteinbergD. AmeS.M. LuceroM.G. SzucsM.J. MacMullanM. BervenF.S. DuttaA. SanvictoresD.M. TalloV.L. BencherR. EisingerD.P. DhingraU. DebS. AliS.M. MehtaS. FawziW.W. RileyI.D. SazawalS. PremjiZ. BlackR. MurrayC.J.L. RodriguezB. CarrS.A. WaltD.R. GilletteM.A. A rapid triage test for active pulmonary tuberculosis in adult patients with persistent cough.Sci. Transl. Med.201911515eaaw828710.1126/scitranslmed.aaw828731645455
    [Google Scholar]
  45. RahmanT. KhandakarA. KadirM.A. IslamK.R. IslamK.F. MazharR. HamidT. IslamM.T. KashemS. MahbubZ.B. AyariM.A. ChowdhuryM.E.H. Reliable tuberculosis detection using chest X-ray with deep learning, segmentation, and visualization.IEEE Access2020819158619160110.1109/ACCESS.2020.3031384
    [Google Scholar]
  46. Belarus tuberculosis portal.B. P. Health.2020 https://grantome.com/grant/NIH/AAI12021001-1-0-5
    [Google Scholar]
  47. JaegerS. CandemirS. AntaniS. WángY-X.J. LuP-X. ThomaG. Two public chest X-ray datasets for computer-aided screening of pulmonary diseases.Quant. Imaging Med. Surg.20144647547710.3978/j.issn.2223‑4292.2014.11.2025525580
    [Google Scholar]
  48. RSNA pneumonia detection challenge.2014Available from: https://www.kaggle.com/competitions/rsna-pneumonia-detection-challenge
    [Google Scholar]
  49. BhardawajF. JainS. CAD system design for two-class brain tumor classification using transfer learning.Curr. Cancer Ther. Rev.202420222323210.2174/1573394719666230816091316
    [Google Scholar]
  50. GargyaS. JainS. CAD system design for pituitary tumor classification based on transfer learning technique.Curr. Med. Imaging2023201e1573405624614610.2174/011573405624614623101811041537916629
    [Google Scholar]
  51. SalauAO JainS Feature extraction: A survey of the types, techniques and applications.5th International Conference on Signal Processing and Communication (ICSC-2019)Noida (INDIA), Mar. 2019, pp. 158–164.10.1109/ICSC45622.2019.8938371
    [Google Scholar]
  52. RahmanM. CaoY. SunX. Deep pre-trained networks as a feature extractor with XGBoost to detect tuberculosis from chest Xray.Comput. Electr. Eng.202193107252
    [Google Scholar]
  53. AhmadW.S.H.M.W AhmadM.F Comparison of different feature extraction techniques in content-based image retrieval for CT brain images.2008 IEEE 10th Workshop on Multimedia Signal ProcessingCairns, QLD, Australia, 2008, pp. 503–508.10.1109/MMSP.2008.4665130
    [Google Scholar]
  54. KumarR. KumbharkarP. VanamS. SharmaS. Medical images classification using deep learning: A survey.Multimedia Tools Appl.2023837196831972810.1007/s11042‑023‑15576‑7
    [Google Scholar]
  55. OrtegaJ. A. R. Study of segmentation and identification techniques applied to environments with natural illumination and moving objects.Polytechnic University of Valencia2011
    [Google Scholar]
  56. AnsariM.A. KurchaniyaD. DixitM. A comprehensive analysis of image edge detection techniques.Int. J. Multimed. Ubiquitous Eng.2017121111210.14257/ijmue.2017.12.11.01
    [Google Scholar]
  57. Dharampal Methods of image edge detection.J Electr Electron Syst20154216
    [Google Scholar]
  58. RashmiSalavi MandarSohani Textural feature based image classification using artificial neural network.Advances in Computing, Communication and Control. ICAC3 2011.Springer, Berlin, Heidelberg, 2011, pp 62–69.10.1007/978‑3‑642‑18440‑6_8
    [Google Scholar]
  59. TianD.P. A review on image feature extraction and representation techniques.Int. J. Multimed. Ubiquitous Eng.201384
    [Google Scholar]
  60. PrasharN. SoodM. JainS. Novel cardiac arrhythmia processing using machine learning techniques.Int. J. Image Graph.2020203205002310.1142/S0219467820500230
    [Google Scholar]
  61. DamljanovicA. RuospoA. SanchezE. SquilleroG. Machine learning for hardware security: Classifier-based identification of Trojans in pipelined microprocessors.Appl. Soft Comput.202211610806810.1016/j.asoc.2021.108068
    [Google Scholar]
  62. SinghM. Evolution of machine learning in tuberculosis diagnosis: A review of deep learning-based medical applications.Electronics20221117263410.3390/electronics11172634
    [Google Scholar]
  63. PalB. JainS. Novel discrete component wavelet transform for detection of cerebrovascular diseases.Sadhana202247423710.1007/s12046‑022‑02016‑9
    [Google Scholar]
  64. JamwalA. JainS. Robust multimodal fusion network employing novel empirical riglit wavelet transform for brain images.Meas. Sensors202224Dec10052910.1016/j.measen.2022.100529
    [Google Scholar]
  65. TheodosiouA.A. ReadR.C. Artificial intelligence, machine learning and deep learning: Potential resources for the infection clinician.J. Infect.202387428729410.1016/j.jinf.2023.07.00637468046
    [Google Scholar]
  66. BalakrishnanV. KherabiY. RamanathanG. PaulS.A. TiongC.K. Machine learning approaches in diagnosing tuberculosis through biomarkers - A systematic review.Prog. Biophys. Mol. Biol.2023179162510.1016/j.pbiomolbio.2023.03.00136931609
    [Google Scholar]
  67. PasaF. GolkovV. PfeifferF. CremersD. PfeifferD. Efficient deep network architectures for fast chest x-ray tuberculosis screening and visualization.Sci. Rep.201991626810.1038/s41598‑019‑42557‑431000728
    [Google Scholar]
  68. JainS. SalauA.O. Robust predictive model for different cancers due to biomarker proteins.Curr. Signal Transduct. Ther.2023183e06102322186810.2174/0115743624257352230920091046
    [Google Scholar]
  69. HelmJ.M. SwiergoszA.M. HaeberleH.S. KarnutaJ.M. SchafferJ.L. KrebsV.E. SpitzerA.I. RamkumarP.N. Machine learning and artificial intelligence: Definitions, applications, and future directions.Curr. Rev. Musculoskelet. Med.2020131697610.1007/s12178‑020‑09600‑831983042
    [Google Scholar]
  70. Perea-JacoboR. Paredes-GutiérrezG.R. Guerrero-ChevannierM.Á. FloresD.L. Muñiz-SalazarR. Machine learning of the whole genome sequence of Mycobacterium tuberculosis : A scoping prisma-based review.Microorganisms2023118187210.3390/microorganisms1108187237630431
    [Google Scholar]
  71. TiwariS.M.A. Machine learning techniques for tuberculosis prediction.International Conference on Advances in Engineering Science Management and TechnologyDehradun, India, March 14, 2019, pp. 1–8.
    [Google Scholar]
  72. LiangS. The application of artificial intelligence in the diagnosis and drug resistance prediction of Pulmonary tuberculosis.Front. Med.2022993508010.3389/fmed.2022.935080
    [Google Scholar]
  73. BhattamisraS. K. BanerjeeP. GuptaP. MayurenJ. PatraS. CandasamyM. Artificial intelligence in pharmaceutical and healthcare research.Big Data Cogn. Comput.2023711010.3390/bdcc7010010
    [Google Scholar]
  74. DohálM. Advancing tuberculosis management: The role of predictive, preventive, and personalized medicine.Front. Microbiol.202314122543810.3389/fmicb.2023.1225438
    [Google Scholar]
  75. Tuberculosis Chest X-rays (Shenzhen).2014Available from: https://www.kaggle.com/datasets/raddar/tuberculosis-chest-xrays-shenzhen
/content/journals/cmir/10.2174/0115734056343819250307040956
Loading
/content/journals/cmir/10.2174/0115734056343819250307040956
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test