Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Introduction

Accurate preoperative grading of adult-type diffuse gliomas is crucial for personalized treatment. Emerging evidence suggests tumor cell infiltration extends beyond peritumoral edema, but the predictive value of radiomics features in these regions remains underexplored.

Methods

A retrospective analysis was conducted on 180 patients from the UCSF-PDGM dataset, split into training (70%) and validation (30%) cohorts. Intratumoral volumes (VOI_I, including tumor body and edema) and peritumoral volumes (VOI_P) at 7 expansion distances (1–5, 10, 15 mm) were analyzed. Feature selection involved Levene's test, t-test, mRMR, and LASSO regression. Radiomics models (VOI_I, VOI_P, and combined intratumoral-peritumoral models) were evaluated using AUC, accuracy, sensitivity, specificity, and F1 score, with Delong tests for comparisons.

Results

The combined radiomics models established for the intratumoral and peritumoral 1-5mm ranges (VOI_1-5mm) showed better predictive performance than the VOI_I model (AUC=0.815/0.672), among which the VOI_1 model performed the best: in the training cohort, the AUC was 0.903 (accuracy=0.880, sensitivity=0.905, specificity=0.855, F1=0.884); in the validation cohort, the AUC was 0.904 (accuracy=0.852, sensitivity=0.778, specificity=0.926, F1=0.840). This model significantly outperformed the VOI_I model (p<0.05) and the 10/15mm combined models (p<0.05).

Discussion

The peritumoral regions within 5 mm beyond the edematous area contain critical grading information, likely reflecting subtle tumor infiltration. Model performance declined with larger peritumoral distances, possibly due to increased normal tissue dilution.

Conclusion

The radiomics features of the intratumoral region and the peritumoral region within 5 mm can optimize the preoperative grading of gliomas, providing support for surgical planning and prognostic evaluation.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056387494250823132119
2025-08-28
2025-11-08
Loading full text...

Full text loading...

/deliver/fulltext/cmir/21/1/CMIR-21-E15734056387494.html?itemId=/content/journals/cmir/10.2174/0115734056387494250823132119&mimeType=html&fmt=ahah

References

  1. MillerK.D. OstromQ.T. KruchkoC. PatilN. TihanT. CioffiG. FuchsH.E. WaiteK.A. JemalA. SiegelR.L. Barnholtz-SloanJ.S. Brain and other central nervous system tumor statistics, 2021.CA Cancer J. Clin.202171538140610.3322/caac.2169334427324
    [Google Scholar]
  2. TanA.C. AshleyD.M. LópezG.Y. MalinzakM. FriedmanH.S. KhasrawM. Management of glioblastoma: State of the art and future directions.CA Cancer J. Clin.202070429931210.3322/caac.2161332478924
    [Google Scholar]
  3. MolinaroA.M. TaylorJ.W. WienckeJ.K. WrenschM.R. Genetic and molecular epidemiology of adult diffuse glioma.Nat. Rev. Neurol.201915740541710.1038/s41582‑019‑0220‑231227792
    [Google Scholar]
  4. BergerT.R. WenP.Y. Lang-OrsiniM. ChukwuekeU.N. World health organization 2021 classification of central nervous system tumors and implications for therapy for adult-type gliomas: A review.JAMA Oncol.20228101493150110.1001/jamaoncol.2022.284436006639
    [Google Scholar]
  5. SanaiN. PolleyM-Y. McDermottM.W. ParsaA.T. BergerM.S. An extent of resection threshold for newly diagnosed glioblastomas.J. Neurosurg.201111513810.3171/2011.2.jns1099821417701
    [Google Scholar]
  6. CuddapahV.A. RobelS. WatkinsS. SontheimerH. A neurocentric perspective on glioma invasion.Nat. Rev. Neurosci.201415745546510.1038/nrn376524946761
    [Google Scholar]
  7. FabroF. LamfersM.L.M. LeenstraS. Advancements, challenges, and future directions in tackling glioblastoma resistance to small kinase inhibitors.Cancers202214360010.3390/cancers1403060035158868
    [Google Scholar]
  8. LiG. LiL. LiY. QianZ. WuF. HeY. JiangH. LiR. WangD. ZhaiY. WangZ. JiangT. ZhangJ. ZhangW. An MRI radiomics approach to predict survival and tumour-infiltrating macrophages in gliomas.Brain202214531151116110.1093/brain/awab34035136934
    [Google Scholar]
  9. LinD. LiuJ. KeC. ChenH. LiJ. XieY. MaJ. LvX. FengY. Radiomics analysis of quantitative maps from synthetic MRI for predicting grades and molecular subtypes of diffuse gliomas.Clin. Neuroradiol.202434481782610.1007/s00062‑024‑01421‑338858272
    [Google Scholar]
  10. WangP. XieS. WuQ. WengL. HaoZ. YuanP. ZhangC. GaoW. WangS. ZhangH. SongY. HeJ. GaoY. Model incorporating multiple diffusion MRI features: Development and validation of a radiomics-based model to predict adult-type diffuse gliomas grade.Eur. Radiol.202333128809882010.1007/s00330‑023‑09861‑037439936
    [Google Scholar]
  11. ZetterlingM. RoodakkerK.R. BerntssonS.G. EdqvistP.H. LatiniF. LandtblomA.M. PonténF. AlafuzoffI. LarssonE.M. SmitsA. Extension of diffuse low-grade gliomas beyond radiological borders as shown by the coregistration of histopathological and magnetic resonance imaging data.J. Neurosurg.201612551155116610.3171/2015.10.JNS1558326918468
    [Google Scholar]
  12. MoodiF. Khodadadi ShoushtariF. GhadimiD.J. ValizadehG. KhormaliE. SalariH.M. OhadiM.A.D. NilipourY. JahanbakhshiA. RadH.S. Glioma tumor grading using radiomics on conventional MRI: A comparative study of WHO 2021 and WHO 2016 classification of central nervous tumors.J. Magn. Reson. Imaging202460392393810.1002/jmri.2914638031466
    [Google Scholar]
  13. ZhouW. WenJ. HuangQ. ZengY. ZhouZ. ZhuY. ChenL. GuanY. XieF. ZhuangD. HuaT. Development and validation of clinical-radiomics analysis for preoperative prediction of IDH mutation status and WHO grade in diffuse gliomas: A consecutive L-[methyl-11C] methionine cohort study with two PET scanners.Eur. J. Nucl. Med. Mol. Imaging20245151423143510.1007/s00259‑023‑06562‑038110710
    [Google Scholar]
  14. CalabreseE. Villanueva-MeyerJ.E. RudieJ.D. RauscheckerA.M. BaidU. BakasS. ChaS. MonganJ.T. HessC.P. The university of california san francisco preoperative diffuse glioma MRI dataset.Radiol. Artif. Intell.20224622005810.1148/ryai.22005836523646
    [Google Scholar]
  15. ClarkK. VendtB. SmithK. FreymannJ. KirbyJ. KoppelP. MooreS. PhillipsS. MaffittD. PringleM. TarboxL. PriorF. The cancer imaging archive (TCIA): Maintaining and operating a public information repository.J. Digit. Imaging20132661045105710.1007/s10278‑013‑9622‑723884657
    [Google Scholar]
  16. YushkevichP.A. PivenJ. HazlettH.C. SmithR.G. HoS. GeeJ.C. GerigG. User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability.Neuroimage20063131116112810.1016/j.neuroimage.2006.01.01516545965
    [Google Scholar]
  17. ZwanenburgA. VallièresM. AbdalahM.A. AertsH.J.W.L. AndrearczykV. ApteA. AshrafiniaS. BakasS. BeukingaR.J. BoellaardR. BogowiczM. BoldriniL. BuvatI. CookG.J.R. DavatzikosC. DepeursingeA. DesseroitM.C. DinapoliN. DinhC.V. EchegarayS. El NaqaI. FedorovA.Y. GattaR. GilliesR.J. GohV. GötzM. GuckenbergerM. HaS.M. HattM. IsenseeF. LambinP. LegerS. LeijenaarR.T.H. LenkowiczJ. LippertF. LosnegårdA. Maier-HeinK.H. MorinO. MüllerH. NapelS. NiocheC. OrlhacF. PatiS. PfaehlerE.A.G. RahmimA. RaoA.U.K. SchererJ. SiddiqueM.M. SijtsemaN.M. Socarras FernandezJ. SpeziE. SteenbakkersR.J.H.M. Tanadini-LangS. ThorwarthD. TroostE.G.C. UpadhayaT. ValentiniV. van DijkL.V. van GriethuysenJ. van VeldenF.H.P. WhybraP. RichterC. LöckS. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping.Radiology2020295232833810.1148/radiol.202019114532154773
    [Google Scholar]
  18. ChangC-C. LinC-J. LIBSVM: A library for support vector machines.ACM Trans. Intell. Syst. Technol.2011212710.1145/1961189.1961199
    [Google Scholar]
  19. FoleyD. Considerations of sample and feature size.IEEE Trans. Inf. Theory20061861862610.1109/TIT.1972.1054863
    [Google Scholar]
  20. XiaoL. ZhouB. FanC. Automatic brain MRI tumors segmentation based on deep fusion of weak edge and context features.Artif. Intell. Rev.20255815410.1007/s10462‑025‑11151‑8
    [Google Scholar]
  21. FanC. YangL.T. XiaoL. A step gravitational search algorithm for function optimization and STTM’s synchronous feature selection-parameter optimization.Artif. Intell. Rev.20255817910.1007/s10462‑025‑11193‑y
    [Google Scholar]
  22. ZhouH. XuR. MeiH. ZhangL. YuQ. LiuR. FanB. Application of enhanced T1WI of MRI radiomics in glioma grading.Int. J. Clin. Pract.20222022325257410.1155/2022/325257435685548
    [Google Scholar]
  23. van der VoortS.R. IncekaraF. WijnengaM.M.J. KapsasG. GahrmannR. SchoutenJ.W. Nandoe TewarieR. LycklamaG.J. De Witt HamerP.C. EijgelaarR.S. FrenchP.J. DubbinkH.J. VincentA.J.P.E. NiessenW.J. van den BentM.J. SmitsM. KleinS. Combined molecular subtyping, grading, and segmentation of glioma using multi-task deep learning.Neuro-oncol.202325227928910.1093/neuonc/noac16635788352
    [Google Scholar]
  24. LinK. CidanW. QiY. WangX. Glioma grading prediction using multiparametric magnetic resonance imaging-based radiomics combined with proton magnetic resonance spectroscopy and diffusion tensor imaging.Med. Phys.20224974419442910.1002/mp.1564835366379
    [Google Scholar]
  25. ChengJ. LiuJ. YueH. BaiH. PanY. WangJ. Prediction of glioma grade using intratumoral and peritumoral radiomic features from multiparametric MRI images.IEEE/ACM Trans. Comput. Biol. Bioinformatics20221921084109510.1109/TCBB.2020.303353833104503
    [Google Scholar]
  26. LambinP. LeijenaarR.T.H. DeistT.M. PeerlingsJ. de JongE.E.C. van TimmerenJ. SanduleanuS. LarueR.T.H.M. EvenA.J.G. JochemsA. van WijkY. WoodruffH. van SoestJ. LustbergT. RoelofsE. van ElmptW. DekkerA. MottaghyF.M. WildbergerJ.E. WalshS. Radiomics: The bridge between medical imaging and personalized medicine.Nat. Rev. Clin. Oncol.2017141274976210.1038/nrclinonc.2017.14128975929
    [Google Scholar]
  27. WuL. LouX. KongN. XuM. GaoC. Can quantitative peritumoral CT radiomics features predict the prognosis of patients with non-small cell lung cancer? A systematic review.Eur. Radiol.20233332105211710.1007/s00330‑022‑09174‑836307554
    [Google Scholar]
  28. TunaliI. HallL.O. NapelS. CherezovD. GuvenisA. GilliesR.J. SchabathM.B. Stability and reproducibility of computed tomography radiomic features extracted from peritumoral regions of lung cancer lesions.Med. Phys.201946115075508510.1002/mp.1380831494946
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056387494250823132119
Loading
/content/journals/cmir/10.2174/0115734056387494250823132119
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): CNS; Glioma grading; MRI; Peritumoral regions; Radiomics
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test