Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Introduction

Anemia is a common blood disorder caused by a low red blood cell count, reducing blood hemoglobin. It affects children, adolescents, and adults of all genders. Anemia diagnosis typically involves invasive procedures like peripheral blood smears and complete blood count (CBC) analysis. This study aims to develop a cost-effective, non-invasive tool for anemia detection using eye conjunctiva images.

Method

Eye conjunctiva images were captured from 54 subjects using three imaging modalities such as a DSLR camera, a smartphone camera, and a smartphone camera fitted with a 3D-printed spacer macro lens. Image processing techniques, including You Only Look Once (YOLOv8) and the Segment Anything Model (SAM), and K-means clustering were used to analyze the image. By using an MLP classifier, the images were classified as anemic, moderately anemic, and normal. The trained model was embedded into an Android application with geotagging capabilities to map the prevalence of anemia in different regions.

Results

Features extracted using SAM segmentation showed higher statistical significance (p < 0.05) compared to K-Means. Comparing high resolution (DSLR modality) and the proposed 3D-printed spacer macrolens shows statistically significant differences (p < 0.05). The classification accuracy was 98.3% for images from a 3D spacer-equipped smartphone camera, on par with the 98.8% accuracy obtained from DSLR camera-based images.

Conclusion

The mobile application, developed using images captured with a 3D spacer-equipped modality, provides portable, cost-effective, and user-friendly non-invasive anemia screening. By identifying anemic clusters, it assists healthcare workers in targeted interventions and supports global health initiatives like Sustainable Development Goal (SDG) 3.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056389602250826081355
2025-08-29
2025-10-29
Loading full text...

Full text loading...

/deliver/fulltext/cmir/21/1/CMIR-21-E15734056389602.html?itemId=/content/journals/cmir/10.2174/0115734056389602250826081355&mimeType=html&fmt=ahah

References

  1. GedfieS GetawaS MelkuM Prevalence and associated factors of iron deficiency and iron deficiency anemia among under-5 children: A systematic review and meta-analysis.Global pediatr health.2022910.1177/2333794X221110860
    [Google Scholar]
  2. OwaisA. MerrittC. LeeC. BhuttaZ.A. Anemia among women of reproductive age: An overview of global burden, trends, determinants, and drivers of progress in low-and middle-income countries.Nutrients2021138274510.3390/nu1308274534444903
    [Google Scholar]
  3. GenevaS. World Health Organization Haemoglobin concentrations for the diagnosis of anaemia and assessment of severity.2011Available from: https://iris.who.int/handle/10665/85839
  4. DimauroG. De RuvoS. Di TerlizziF. RuggieriA. VolpeV. ColizziL. GirardiF. Estimate of anemia with new non-invasive systems—a moment of reflection.Electronics20209578010.3390/electronics9050780
    [Google Scholar]
  5. SeharN. NirmalaK. Analysis of conjunctiva for screening of anemia.2024 International Conference on Recent Advances in Electrical, Electronics, Ubiquitous Communication, and Computational Intelligence (RAEEUCCI)Chennai, India, 2024, pp. 1-610.1109/RAEEUCCI61380.2024.10547925
    [Google Scholar]
  6. DimauroG. CamporealeM.G. DipalmaA. GuariniA. MagliettaR. Anaemia detection based on sclera and blood vessel colour estimation.Biomed. Signal Process. Control20238110448910.1016/j.bspc.2022.104489
    [Google Scholar]
  7. KentA.R. ElsingS.H. HebertR.L. Conjunctival vasculature in the assessment of anemia.Ophthalmology2000107227427710.1016/S0161‑6420(99)00048‑210690824
    [Google Scholar]
  8. DimauroG. CaivanoD. GirardiF. A new method and a non-invasive device to estimate anemia based on digital images of the conjunctiva.IEEE Access20186469684697510.1109/ACCESS.2018.2867110
    [Google Scholar]
  9. DimauroG. GuariniA. CaivanoD. GirardiF. PasciollaC. IacobazziA. Detecting clinical signs of anaemia from digital images of the palpebral conjunctiva.IEEE Access2019711348811349810.1109/ACCESS.2019.2932274
    [Google Scholar]
  10. DimauroG. CaivanoD. Di PilatoP. DipalmaA. CamporealeM.G. A systematic mapping study on research in anemia assessment with non-invasive devices.Appl. Sci.20201014480410.3390/app10144804
    [Google Scholar]
  11. WemyssT.A. RanaA. HillmanS.L. Nixon-HillM. YadavK. DadhwalV. LeungT.S. Diagnosing anaemia via smartphone colorimetry of the eye in a population of pregnant women.Physiol. Meas.202546101NT0110.1088/1361‑6579/adab4d39819705
    [Google Scholar]
  12. LeeS.J. PoonJ. JindarojanakulA. HuangC.C. VieraO. CheongC.W. LeeJ.D. Artificial intelligence in dentistry: Exploring emerging applications and future prospects.J. Dent.202515510564810.1016/j.jdent.2025.10564839993553
    [Google Scholar]
  13. MallineniS.K. SethiM. PunugotiD. KothaS.B. AlkhayalZ. MubarakiS. AlmotawahF.N. KothaS.L. SajjaR. NettamV. ThakareA.A. SakhamuriS. Artificial intelligence in dentistry: A descriptive review.Bioengineering 20241112126710.3390/bioengineering1112126739768085
    [Google Scholar]
  14. ShethT.N. ChoudhryN.K. BowesM. DetskyA.S. The relation of conjunctival pallor to the presence of anemia.J. Gen. Intern. Med.199712210210610.1007/s11606‑006‑5004‑x9051559
    [Google Scholar]
  15. SunerS. CrawfordG. McMurdyJ. JayG. Non-invasive determination of hemoglobin by digital photography of palpebral conjunctiva.J. Emerg. Med.200733210511110.1016/j.jemermed.2007.02.01117692757
    [Google Scholar]
  16. GhosalS. DasD. UdutalapallyV. TalukderA.K. MisraS. sHEMO: Smartphone spectroscopy for blood hemoglobin level monitoring in smart anemia-care.IEEE Sens. J.20212168520852910.1109/JSEN.2020.3044386
    [Google Scholar]
  17. KasiviswanathanS. VijayanT.B. JohnS. Ridge regression algorithm based non-invasive anaemia screening using conjunctiva images.J. Ambient Intell. Humaniz. Comput.202020201110.1007/s12652‑020‑02618‑3
    [Google Scholar]
  18. Delgado-RiveraG. Roman-GonzalezA. Alva-MantariA. Saldivar-EspinozaB. ZimicM. Barrientos-PorrasF. Salguedo-BohorquezM. Method for the automatic segmentation of the palpebral conjunctiva using image processing.IEEE International Conference on Automation/XXIII Congress of the Chilean Association of Automatic Control (ICA-ACCA)Concepcion, Chile, 2018, pp. 1-4,10.1109/ICA‑ACCA.2018.8609744
    [Google Scholar]
  19. PatelK. PatelV. PrajapatiV. ChauhanD. HajiA. DegadwalaS. Safety helmet detection using YOLO v8.2023 3rd International Conference on Pervasive Computing and Social Networking (ICPCSN)2023 Jun 19-20 in Salem, India; pages 22-2610.1109/ICPCSN58827.2023.00012
    [Google Scholar]
  20. LongoD.L. Harrisons principles of internal medicine.2025Available from: https://biblioteca.uazuay.edu.ec/buscar/item/74596
  21. WuMN LinCC ChangCC Brain tumor detection using color-based k-means clustering segmentation.Third International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP 2007).Kaohsiung, Taiwan, 2007 Nov 26-28, PP245-25010.1109/IIHMSP.2007.4457697
    [Google Scholar]
  22. MuthalaguR. BaiV.T. GraciasD. JohnS. Developmental screening tool: Accuracy and feasibility of non-invasive anaemia estimation.Technol. Health Care201826472372710.3233/THC‑18129129758979
    [Google Scholar]
  23. AndrésE. CuéllarM.P. NavarroG. Efficient dimensionality reduction strategies for quantum reinforcement learning.IEEE Access20231110453410455310.1109/ACCESS.2023.3318173
    [Google Scholar]
  24. VyasA. KumarK. SharmaA. VermaD. BhatiaD. WahiN. YadavA.K. Advancing the frontier of artificial intelligence on emerging technologies to redefine cancer diagnosis and care.Comput. Biol. Med.202519111017810.1016/j.compbiomed.2025.11017840228444
    [Google Scholar]
  25. OyeniyiJ. OluwaseyiP. Emerging trends in AI-powered medical imaging: enhancing diagnostic accuracy and treatment decisions.Int. J. Enhanc. Res. Sci. Technol. Eng.2024134819410.55948/IJERSTE.2024.0412
    [Google Scholar]
  26. SharmaA. LysenkoA. JiaS. BoroevichK.A. TsunodaT. Advances in AI and machine learning for predictive medicine.J. Hum. Genet.2024691048749710.1038/s10038‑024‑01231‑y38424184
    [Google Scholar]
  27. BadrulhishamF. Pogatzki-ZahnE. SegelckeD. SpisakT. VollertJ. Machine learning and artificial intelligence in neuroscience: A primer for researchers.Brain Behav. Immun.202411547047910.1016/j.bbi.2023.11.00537972877
    [Google Scholar]
  28. ConnollyC. FleissT. A study of efficiency and accuracy in the transformation from RGB to CIELAB color space.IEEE Trans. Image Process.1997671046104810.1109/83.59727918282994
    [Google Scholar]
  29. SunerS. RaynerJ. OzturanI.U. HoganG. MeehanC.P. ChambersA.B. BairdJ. JayG.D. Prediction of anemia and estimation of hemoglobin concentration using a smartphone camera.PLoS One2021167e025349510.1371/journal.pone.025349534260592
    [Google Scholar]
  30. ManninoR.G. MyersD.R. TyburskiE.A. CarusoC. BoudreauxJ. LeongT. CliffordG.D. LamW.A. Smartphone app for non-invasive detection of anemia using only patient-sourced photos.Nat. Commun.201891492410.1038/s41467‑018‑07262‑230514831
    [Google Scholar]
  31. NoorN.B. OyshiU.A. DasA. IqbalK. A systematic approach to predict anemia from eye conjunctiva images.26th International Conference on Computer and Information Technology (ICCIT)Cox's Bazar, Bangladesh, 2023, pp. 1-510.1109/ICCIT60459.2023.10441533
    [Google Scholar]
  32. AppiaheneP. ArthurE.J. KorankyeS. AfrifaS. AsareJ.W. DonkohE.T. Detection of anemia using conjunctiva images: A smartphone application approach.Med. Novel Technol. Devices20231810023710.1016/j.medntd.2023.100237
    [Google Scholar]
  33. KasiviswanathanS. VijayanT.B. JohnS. Performance analysis of the ensemble model in anaemia detection from unmodified smartphone-captured conjunctiva images.J. Inst. Electron. Telecommun. Eng.202470107808781910.1080/03772063.2024.2367046
    [Google Scholar]
  34. TamirA JahanCS SaifMS ZamanSU IslamMM KhanAI FattahSA ShahnazC Detection of anemia from image of the anterior conjunctiva of the eye by image processing and thresholding.2017 IEEE region 10 humanitarian technology conference (R10-HTC)Dhaka, 2017 Dec 21 (pp. 697-701).10.1109/R10‑HTC.2017.8289053
    [Google Scholar]
  35. SevaniN. Detection anemia based on conjunctiva pallor level using k-means a lgorithm.IOP Conf. Ser.201842001210110.1088/1757‑899X/420/1/012101
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056389602250826081355
Loading
/content/journals/cmir/10.2174/0115734056389602250826081355
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test