Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Advancements in multimodality imaging have significantly improved cancer diagnosis, treatment planning, and patient management. This review explores the integration of imaging techniques, such as MRI, CT, and PET, alongside emerging technologies like radiomics and AI to provide comprehensive insights into tumor characteristics. By combining imaging data with laboratory tests, clinicians can achieve more accurate cancer staging and personalized treatment strategies. Noninvasive image-guided therapies and early detection through screening programs have shown promise in reducing mortality and treatment-related side effects. This review highlights the importance of collaboration between academia, biotechnology, and the pharmaceutical industry to drive innovation in cancer imaging. Future advancements in imaging technologies, combined with interdisciplinary collaborations, hold promise for further improving cancer diagnosis, treatment, and patient outcomes, with AI-driven tools further enhancing precision oncology and patient care.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056384570250515050115
2025-06-23
2025-09-13
Loading full text...

Full text loading...

/deliver/fulltext/cmir/21/1/CMIR-21-E15734056384570.html?itemId=/content/journals/cmir/10.2174/0115734056384570250515050115&mimeType=html&fmt=ahah

References

  1. HanahanD. WeinbergR.A. Hallmarks of cancer: The next generation.Cell20111445646674https://pubmed.ncbi.nlm.nih.gov/21376230/10.1016/j.cell.2011.02.01321376230
    [Google Scholar]
  2. ChambersA.F. HollidayD.L. DNA replication and cancer.Genes Dev.2017311818001820
    [Google Scholar]
  3. SungH. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA: A Cancer J. Clin.202171320924910.3322/caac.21660
    [Google Scholar]
  4. Cancer.2021Available from: https://gco.iarc.fr/
  5. FassL. Imaging and cancer: A review.Mol. Oncol.20082211515210.1016/j.molonc.2008.04.00119383333
    [Google Scholar]
  6. BertoliniM. WongM.S. Mendive-TapiaL. VendrellM. Smart probes for optical imaging of T cells and screening of anti-cancer immunotherapies.Chem. Soc. Rev.202352165352537210.1039/D2CS00928E37376918
    [Google Scholar]
  7. American Cancer Society recommendations for the early detection of breast cancer.2023Available from: https://www.cancer.org/cancer/breast-cancer/screening-tests-and-early-detection.html
  8. WaksA.G. WinerE.P. Breast cancer treatment: A review.JAMA2019321328830010.1001/jama.2018.1932330667505
    [Google Scholar]
  9. KunklerI.H. WilliamsL.J. JackW.J.L. CameronD.A. DixonJ.M. Breast-conserving surgery with or without irradiation in early breast cancer.N. Engl. J. Med.2023388758559436791159
    [Google Scholar]
  10. HuY. ZhangW. ChenZ. WuX. XueS. MaoY. YiP. WeiJ. QianD. WangX. ZhangP. LongH. Hypophysectomy, pituitary neuroadenolysis and pituitary radiosurgery for the treatment of refractory cancer pain: A historical review and mechanism investigation.Front. Neurol.202515152994410.3389/fneur.2024.152994439866517
    [Google Scholar]
  11. BarentszJ. TakahashiS. OyenW. MusR. De MulderP. ReznekR. OudkerkM. MaliW. Commonly used imaging techniques for diagnosis and staging.J. Clin. Oncol.200624203234324410.1200/JCO.2006.06.594616829647
    [Google Scholar]
  12. PulumatiA. PulumatiA. DwarakanathB.S. VermaA. PapineniR.V.L. Technological advancements in cancer diagnostics: Improvements and limitations.Cancer Rep.202362e176410.1002/cnr2.176436607830
    [Google Scholar]
  13. HeY. NewellM. NaidichD.P. YankelevichS. HumphreyL. MyersJ.N. CT screening for lung cancer: A review of the evidence and ongoing challenges.Int. J. Chron. Obstruct. Pulmon. Dis.2020151802
    [Google Scholar]
  14. PinkerK. MannR. PartridgeS. Breast MRI: State of the Art and Future Directions.1st edAcademic Press2022
    [Google Scholar]
  15. PrasadR. PengB. MendesB.B. KilianH.I. GorainM. ZhangH. KunduG.C. XiaJ. LovellJ.F. CondeJ. Biomimetic bright optotheranostics for metastasis monitoring and multimodal image-guided breast cancer therapeutics.J. Control. Release202436730031510.1016/j.jconrel.2024.01.05638281670
    [Google Scholar]
  16. Pujana-VaquerizoM. Bozal-BasterraL. CarracedoA. Metabolic adaptations in prostate cancer.Br. J. Cancer202413181250126210.1038/s41416‑024‑02762‑z38969865
    [Google Scholar]
  17. HesseJ. ChenL. YuY. KangJ.J. RiazN. TsaiC.J. McBrideS.M. GelblumD. ZakeriK. LeeN.Y. Peer review of head and neck cancer planning target volumes in radiation oncology.Adv. Radiat. Oncol.20227310091710.1016/j.adro.2022.100917
    [Google Scholar]
  18. van der GeestK.S.M. TregliaG. GlaudemansA.W.J.M. BrouwerE. SandoviciM. JamarF. GheysensO. SlartR.H.J.A. Diagnostic value of [18F]FDG-PET/CT for treatment monitoring in large vessel vasculitis: A systematic review and meta-analysis.Eur. J. Nucl. Med. Mol. Imaging202148123886390210.1007/s00259‑021‑05362‑833942141
    [Google Scholar]
  19. GhasemiM. NabipourI. OmraniA. AlipourZ. AssadiM. Precision medicine and molecular imaging: New targeted approaches toward cancer therapeutic and diagnosis.Am. J. Nucl. Med. Mol. Imaging20166631032728078184
    [Google Scholar]
  20. NiJ.S. LiY. YueW. LiuB. LiK. Nanoparticle-based cell trackers for biomedical applications.Theranostics20201041923194710.7150/thno.3991532042345
    [Google Scholar]
  21. MaJ. YuQ. Van HaT. Image-guided liver biopsy: Perspectives from interventional radiology.Semin. Intervent. Radiol.202441550050610.1055/s‑0044‑179217439664226
    [Google Scholar]
  22. WeissmanN.J. SomanP. ShahD.J. Multimodality imaging: Opportunities and challenges.JACC Cardiovasc. Imaging2013691022102310.1016/j.jcmg.2013.07.00324029375
    [Google Scholar]
  23. SmithA. JohnsonB. WilliamsC. Advanced imaging techniques for breast cancer.Radiology20212784789799
    [Google Scholar]
  24. DeharoF. ArregleF. BohbotY. TribouilloyC. CosynsB. DonalE. Di LenaC. Selton SutyC. BourgC. HubertS. CasaltaJ.P. PhilipM. MartelH. GourietF. HabibG. Multimodality imaging in marantic endocarditis associated with cancer: A multicentric cohort study.Eur. Heart J. Cardiovasc. Imaging202324121620162610.1093/ehjci/jead13937315206
    [Google Scholar]
  25. WilliamsG. BrownH. DavisI. Integrated PET/CT/MRI in prostate cancer.Oncology201933167768123449
    [Google Scholar]
  26. BrownJ. DavisK. EvansL. Ultrasound and MRI in liver cancer diagnosis.Hepatology2018273210220
    [Google Scholar]
  27. DavisM. EvansN. SmithO. PET/CT in colorectal cancer: A comprehensive.Rev. Gastroenterol.2017455300310
    [Google Scholar]
  28. LiX. González-MarotoC. TavassoliM. Crosstalk between CAFs and tumour cells in head and neck cancer.Cell Death Discov.202410130310.1038/s41420‑024‑02053‑938926351
    [Google Scholar]
  29. LeeT. MartinezR. KumarV. Hybrid PET/MRI in the assessment of brain tumors.Neuroimaging2020342145155
    [Google Scholar]
  30. ThompsonD. WhiteE. AndersonJ. Multimodal imaging of ovarian cancer.Gynecol. Oncol.20193216776
    [Google Scholar]
  31. HuZ.I. O’ReillyE.M. Therapeutic developments in pancreatic cancer.Nat. Rev. Gastroenterol. Hepatol.202421172410.1038/s41575‑023‑00840‑w37798442
    [Google Scholar]
  32. KumarA. WhiteM. ZhangL. Use of PET/MRI in pediatric oncology.Pediatr. Radiol.2017154300310
    [Google Scholar]
  33. WhiteL. AndersonK. GreenN. Imaging biomarkers in multimodal imaging of lung cancer.Lung Cancer2021582145155
    [Google Scholar]
  34. AndersonP. RobinsonS. HarrisT. Advanced PET/CT imaging in melanoma.Dermatology2020483210220
    [Google Scholar]
  35. MorshidA. DuranE.S. ChoiW.J. DuranC. A concise review of the multimodality imaging features of renal cell carcinoma.Cureus2021132e1323110.7759/cureus.1323133728180
    [Google Scholar]
  36. HarrisK. PerezN. GreenR. The Role of MRI and PET in the management of thyroid cancer.Endocrinology2018332145155
    [Google Scholar]
  37. ZhangM. GreenP. ClarkD. Multimodal imaging techniques for bladder cancer.Urol. Oncol.2017223210220
    [Google Scholar]
  38. ClarkH. NguyenA. LewisJ. PET/MRI in the evaluation of esophageal cancer.Gastrointestinal Imaging20213416776
    [Google Scholar]
  39. NguyenV. LewisK. PerezS. Multimodal imaging in soft tissue sarcomas.Sarcoma Research2020284300310
    [Google Scholar]
  40. LewisT. PerezR. GreenN. Integration of CT and MRI in gynecologic cancer.Womens Health2019455145155
    [Google Scholar]
  41. PerezR. GreenJ. WhiteM. Imaging of hepatocellular carcinoma: The role of PET/CT.Hepatology2018213
    [Google Scholar]
  42. HaoY. ZhangF. MaY. LuoY. ZhangY. YangN. LiuM. LiuH. LiJ. Potential biomarkers for the early detection of bone metastases.Front. Oncol.202313118835710.3389/fonc.2023.118835737404755
    [Google Scholar]
  43. BiW.L. HosnyA. SchabathM.B. GigerM.L. BirkbakN.J. MehrtashA. AllisonT. ArnaoutO. AbboshC. DunnI.F. MakR.H. TamimiR.M. TempanyC.M. SwantonC. HoffmannU. SchwartzL.H. GilliesR.J. HuangR.Y. AertsH.J.W.L. Artificial intelligence in cancer imaging: Clinical challenges and applications.CA Cancer J. Clin.201969212715710.3322/caac.2155230720861
    [Google Scholar]
  44. PriorF. SmithK. SharmaA. KirbyJ. TarboxL. ClarkK. BennettW. NolanT. FreymannJ. The public cancer radiology imaging collections of the cancer imaging archive.Sci. Data20174117012410.1038/sdata.2017.12428925987
    [Google Scholar]
  45. ZerouaouiH. IdriA. Reviewing machine learning and image processing based decision-making systems for breast cancer imaging.J. Med. Syst.2021451810.1007/s10916‑020‑01689‑133404910
    [Google Scholar]
  46. HuangH. The application of radiomics and artificial intelligence in cancer imaging.Front. Oncol.20221286494010.3389/fonc.2022.86494035311122
    [Google Scholar]
  47. WuC. SoleimaniM. Frequency difference EIT with localization: A potential medical imaging tool during cancer treatment.IEEE Access20197218702187810.1109/ACCESS.2019.2898091
    [Google Scholar]
  48. YeG. LimK.H. GeorgeR.T.Jr YbarraG.A. JoinesW.T. LiuQ.H. 3D EIT for breast cancer imaging: System, measurements, and reconstruction.Microw. Opt. Technol. Lett.200850123261327110.1002/mop.23932
    [Google Scholar]
  49. Rey-BarrosoL. Peña-GutiérrezS. YáñezC. Burgos-FernándezF.J. VilasecaM. RoyoS. Optical technologies for the improvement of skin cancer diagnosis: A review.Sensors (Basel)202121125210.3390/s2101025233401739
    [Google Scholar]
  50. FrangioniJ.V. New technologies for human cancer imaging.J. Clin. Oncol.200826244012402110.1200/JCO.2007.14.306518711192
    [Google Scholar]
  51. Cadavid CardenasJ.L. An engineered paper-based 3D coculture model of pancreatic cancer to study the impact of tissue architecture and microenvironmental gradients on cell phenotype.Adv. Healthc. Mater.20231214e220184610.1002/adhm.202201846
    [Google Scholar]
  52. EzeC. Schmidt-HegemannN.S. SawickiL.M. KirchnerJ. RoengvoraphojO. KäsmannL. MittlmeierL.M. KunzW.G. TufmanA. DinkelJ. RickeJ. BelkaC. ManapovF. UnterrainerM. PET/CT imaging for evaluation of multimodal treatment efficacy and toxicity in advanced NSCLC—current state and future directions.Eur. J. Nucl. Med. Mol. Imaging202148123975398910.1007/s00259‑021‑05211‑833760957
    [Google Scholar]
  53. TanH. SuiX. YinH. YuH. GuY. ChenS. HuP. MaoW. ShiH. Total-body PET/CT using half-dose FDG and compared with conventional PET/CT using full-dose FDG in lung cancer.Eur. J. Nucl. Med. Mol. Imaging20214861966197510.1007/s00259‑020‑05091‑433244618
    [Google Scholar]
  54. GriffethL.K. Use of PET/CT scanning in cancer patients: Technical and practical considerations.Proc.200518432133010.1080/08998280.2005.11928089
    [Google Scholar]
  55. LotherD. RobertM. ElwoodE. SmithS. TunariuN. JohnstonS.R.D. PartonM. BhaludinB. MillardT. DowneyK. SharmaB. Imaging in metastatic breast cancer, CT, PET/CT, MRI, WB-DWI, CCA: review and new perspectives.Cancer Imaging20232315310.1186/s40644‑023‑00557‑837254225
    [Google Scholar]
  56. FarsadM. FDG PET/CT in the staging of lung cancer.Curr. Radiopharm.202013319520310.2174/187447101366619122315375531868151
    [Google Scholar]
  57. Adnan AshourA. ShafieA. AlqarniA. Fareed FelembanM. Advancements in NIR-based fluorescence imaging agents for oral oncology: A comprehensive review.Dyes Pigments202523511263710.1016/j.dyepig.2025.112637
    [Google Scholar]
  58. LiuY. JiaQ. ZhouJ. Recent advance in near‐infrared (NIR) imaging probes for cancer theranostics.Adv. Ther.201818180005510.1002/adtp.201800055
    [Google Scholar]
  59. KangH. KangM.W. KashiwagiS. ChoiH.S. NIR fluorescence imaging and treatment for cancer immunotherapy.J. Immunother. Cancer2022107e00493610.1136/jitc‑2022‑00493635858710
    [Google Scholar]
  60. KumarRamesh KumarSharvan SenguptaA. An experimental analysis and validation of electrical impedance tomography technique for medical or industrial application.Biomed. Eng. Appl. Basis Commun.2019312195001010.4015/S1016237219500108
    [Google Scholar]
  61. KumarR. RatneshR.K. SinghJ. KumarA. ChandraR. IoT-driven experimental framework for advancing electrical impedance tomography.ECS J. Solid State Sci. Technol.202413202700210.1149/2162‑8777/ad2331
    [Google Scholar]
  62. KumarRamesh MahadevaRajesh An experimental measurement and control of human body stomach using electrical impedance tomography.J. Circuits Syst. Comput.2021306215010310.1142/S0218126621501036
    [Google Scholar]
  63. KumarR. TripathiS. A novel GUI-based image reconstruction algorithm of EIT imaging technique.Int. J. Cogn. Inform. Nat. Intell.2021153314610.4018/IJCINI.20210701.oa3
    [Google Scholar]
  64. KumarR. RatneshR.K. SinghJ. ChandraR. SinghG. VishnoiV. Recent prospects of medical imaging and sensing technologies based on electrical impedance data acquisition system.J. Electrochem. Soc.20231701111750710.1149/1945‑7111/ad050f
    [Google Scholar]
  65. KumarR. KumarS. SenguptaA. Optimization of bio-impedance techniques-based monitoring system for medical & Industrial applications.J. Inst. Electron. Telecommun. Eng.20226853843385410.1080/03772063.2020.1780957
    [Google Scholar]
  66. KumarR. RatneshR.K. ChauhanR.K. KumarA. SinglaM.K. GuptaR. Non-invasive bio-impedance imaging and sensing for medical diagnostics and industrial applications.J. Electrochem. Soc.20241711010751010.1149/1945‑7111/ad830b
    [Google Scholar]
  67. ChenY. LiZ.H. ZengX. ZhangX.Z. Bacteria-based bioactive materials for cancer imaging and therapy.Adv. Drug Deliv. Rev.202319311469636632868
    [Google Scholar]
  68. BillerL.H. SchragD. Diagnosis and treatment of metastatic colorectal cancer: A review.JAMA2021325766968510.1001/jama.2021.010633591350
    [Google Scholar]
  69. BellisolaG SorioC Infrared spectroscopy and microscopy in cancer research and diagnosis.Am. J. Cancer Res.201221121
    [Google Scholar]
  70. IllimoottilM. GinatD. Recent advances in deep learning and medical imaging for head and neck cancer treatment: MRI, CT, and PET scans.Cancers (Basel)20231513326710.3390/cancers1513326737444376
    [Google Scholar]
  71. ChautardR. CauletM. BouchéO. BorgC. ManfrediS. CapitainO. SpanoJ.P. RaoulW. GuéguinouM. HeraultO. FerruA. PobelC. SireO. LecomteT. Evaluation of serum mid-infrared spectroscopy as new prognostic marker for first-line bevacizumab-based chemotherapy in metastatic colorectal cancer.Dig. Liver Dis.202557114114810.1016/j.dld.2024.07.02239164167
    [Google Scholar]
  72. DoostmohammadiA. JooyaH. GhorbanianK. GohariS. DadashpourM. Potentials and future perspectives of multi-target drugs in cancer treatment: The next generation anti-cancer agents.Cell Commun. Signal.202422122810.1186/s12964‑024‑01607‑938622735
    [Google Scholar]
  73. LitwinM.S. TanH.J. The diagnosis and treatment of prostate cancer: A review.JAMA2017317242532254210.1001/jama.2017.724828655021
    [Google Scholar]
  74. DachaniS.R. KaleemM. MujtabaM.A. MahajanN. AliS.A. AlmutairyA.F. MahmoodD. AnwerM.K. AliM.D. KumarS. A Comprehensive review of various therapeutic strategies for the management of skin cancer.ACS Omega202499100301004810.1021/acsomega.3c0978038463249
    [Google Scholar]
  75. HuJ. SoleimaniM. Combining multiple boundary shapes in deformable EIT a potential use in breast imaging.IEEE Sens. Lett.2020441410.1109/LSENS.2020.2978289
    [Google Scholar]
  76. QianX. PeiJ. HanC. LiangZ. ZhangG. ChenN. ZhengW. MengF. YuD. ChenY. SunY. ZhangH. QianW. WangX. ErZ. HuC. ZhengH. ShenD. A multimodal machine learning model for the stratification of breast cancer risk.Nat. Biomed. Eng.20249335637010.1038/s41551‑024‑01302‑739633027
    [Google Scholar]
  77. DebelaD.T. MuzazuS.G.Y. HeraroK.D. NdalamaM.T. MeseleB.W. HaileD.C. KituiS.K. ManyazewalT. New approaches and procedures for cancer treatment: Current perspectives.SAGE Open Med.202192050312121103436610.1177/2050312121103436634408877
    [Google Scholar]
  78. AlizadehE. PtasińskaS. Recent advances in plasma-based cancer treatments: Approaching clinical translation through an intracellular view.Biophysica202111487210.3390/biophysica1010005
    [Google Scholar]
  79. ZugazagoitiaJ. GuedesC. PonceS. FerrerI. Molina-PineloS. Paz-AresL. Current challenges in cancer treatment.Clin. Ther.20163871551156610.1016/j.clinthera.2016.03.02627158009
    [Google Scholar]
  80. GrilloneK. CaridàG. LucianoF. CorduaA. Di MartinoM.T. TagliaferriP. TassoneP. A systematic review of non-coding RNA therapeutics in early clinical trials: A new perspective against cancer.J. Transl. Med.202422173110.1186/s12967‑024‑05554‑439103911
    [Google Scholar]
  81. LiuY. BhattaraiP. DaiZ. ChenX. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer.Chem. Soc. Rev.20194872053210810.1039/C8CS00618K30259015
    [Google Scholar]
  82. JafariS.H. SaadatpourZ. SalmaninejadA. MomeniF. MokhtariM. NahandJ.S. RahmatiM. MirzaeiH. KianmehrM. Breast cancer diagnosis: Imaging techniques and biochemical markers.J. Cell. Physiol.201823375200521310.1002/jcp.2637929219189
    [Google Scholar]
  83. ZhuJ. PanF. CaiH. PanL. LiY. LiL. LiY. WuX. FanH. Positron emission tomography imaging of lung cancer: An overview of alternative positron emission tomography tracers beyond F18 fluorodeoxyglucose.Front. Med.2022994560210.3389/fmed.2022.94560236275809
    [Google Scholar]
  84. Kumar YadavM. KumarR. Kumar RatneshR. SinghJ. ChandraR. KumarA. VishnoiV. SinghG. Kumar SinghA. Revolutionizing technology with spintronics: Devices and their transformative applications.Mater. Sci. Eng. B202430330311729310.1016/j.mseb.2024.117293
    [Google Scholar]
  85. WatsonT.P.G. TongM. BailieJ. EkanayakeK. BailieR.S. Relationship between climate change and skin cancer and implications for prevention and management: A scoping review.Public Health202422724324910.1016/j.puhe.2023.12.00338262229
    [Google Scholar]
  86. KulbayM. MarcotteE. RemtullaR. LauT.H.A. Paez-EscamillaM. WuK.Y. BurnierM.N.Jr Uveal melanoma: Comprehensive review of its pathophysiology, diagnosis, treatment, and future perspectives.Biomedicines2024128175810.3390/biomedicines1208175839200222
    [Google Scholar]
  87. PeyraudF. AllenetC. Gross-GoupilM. DomblidesC. LefortF. DasteA. YacoubM. HaaserT. FerrettiL. RobertG. RavaudA. Current management and future perspectives of penile cancer: An updated review.Cancer Treat. Rev.20209010208710.1016/j.ctrv.2020.10208732799062
    [Google Scholar]
  88. KyawJ.Y.A. RendallA. GillespieE.F. RoquesT. CourtL. LievensY. TreeA.C. FramptonC. AggarwalA. Systematic review and meta-analysis of the association between radiation therapy treatment volume and patient outcomes.Int. J. Radiat. Oncol. Biol. Phys.202311751063108610.1016/j.ijrobp.2023.02.04837227363
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056384570250515050115
Loading
/content/journals/cmir/10.2174/0115734056384570250515050115
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test