Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background and Objective

The incidence of Alzheimer’s disease is rising with the increasing elderly population worldwide. While no cure exists, early diagnosis can significantly slow disease progression. Computer-aided diagnostic systems are becoming critical tools for assisting in the early detection of Alzheimer’s disease. In this systematic review, we aim to evaluate recent advancements in computer-aided decision support systems for Alzheimer’s disease diagnosis, focusing on data modalities, machine learning methods, and performance metrics.

Methods

We conducted a systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Studies published between 2021 and 2024 were retrieved from PubMed, IEEEXplore and Web of Science, using search terms related to Alzheimer’s disease classification, neuroimaging, machine learning, and diagnostic performance. A total of 39 studies met the inclusion criteria, focusing on the use of Magnetic Resonance Imaging, Positron Emission Tomography, and biomarkers for Alzheimer’s disease classification using machine learning models.

Results

Multimodal approaches, combining Magnetic Resonance Imaging with Positron Emission Tomography and Cognitive assessments, outperformed single-modality studies in diagnostic accuracy reliability. Convolutional Neural Networks were the most commonly used machine learning models, followed by hybrid models and Random Forest. The highest accuracy reported for binary classification was 100%, while multi-class classification achieved up to 99.98%. Techniques like Synthetic Minority Over-sampling Technique and data augmentation were frequently employed to handle data imbalance, improving model generalizability.

Discussion

Our review highlights the advantages of using multimodal data in computer-aided decision support systems for more accurate Alzheimer’s disease diagnosis. However, we also identified several limitations, including data imbalance, small sample sizes, and the lack of external validation in most studies. Future research should utilize larger, more diverse datasets, include longitudinal data, and validate models in real-world clinical trials. Additionally, explainability is needed in machine learning models to ensure they are interpretable and reliable in clinical settings.

Conclusion

While computer-aided decision support systems show significant promise in improving the early diagnosis of Alzheimer’s disease, further work is needed to enhance their robustness, generalizability, and clinical applicability. By addressing these challenges, computer-aided decision support systems could play a key role in the early detection of Alzheimer’s disease and potentially reduce health care costs.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056359358250516101749
2025-06-03
2025-09-13
Loading full text...

Full text loading...

/deliver/fulltext/cmir/21/1/CMIR-21-E15734056359358.html?itemId=/content/journals/cmir/10.2174/0115734056359358250516101749&mimeType=html&fmt=ahah

References

  1. MorrisJ.C. StorandtM. MillerJ.P. McKeelD.W. PriceJ.L. RubinE.H. BergL. Mild cognitive impairment represents early-stage Alzheimer disease.Arch. Neurol.200158339740510.1001/archneur.58.3.39711255443
    [Google Scholar]
  2. PetersenR. Early diagnosis of Alzheimer’s disease: Is MCI too late?Curr. Alzheimer Res.20096432433010.2174/15672050978892923719689230
    [Google Scholar]
  3. ThungK.H. WeeC.Y. YapP.T. ShenD. Identification of progressive mild cognitive impairment patients using incomplete longitudinal MRI scans.Brain Struct. Funct.201622183979399510.1007/s00429‑015‑1140‑626603378
    [Google Scholar]
  4. GoenkaN. TiwariS. Deep learning for Alzheimer prediction using brain biomarkers.Artif. Intell. Rev.20215474827487110.1007/s10462‑021‑10016‑0
    [Google Scholar]
  5. HenriquesA.D. BenedetA.L. CamargosE.F. Rosa-NetoP. NóbregaO.T. Fluid and imaging biomarkers for Alzheimer’s disease: Where we stand and where to head to.Exp. Gerontol.201810716917710.1016/j.exger.2018.01.00229307736
    [Google Scholar]
  6. VosT. AllenC. AroraM. BarberR.M. BhuttaZ.A. BrownA. CarterA. CaseyD.C. CharlsonF.J. ChenA.Z. CoggeshallM. CornabyL. DandonaL. DickerD.J. DileggeT. ErskineH.E. FerrariA.J. FitzmauriceC. FlemingT. ForouzanfarM.H. FullmanN. GethingP.W. GoldbergE.M. GraetzN. HaagsmaJ.A. HayS.I. JohnsonC.O. KassebaumN.J. KawashimaT. KemmerL. KhalilI.A. KinfuY. KyuH.H. LeungJ. LiangX. LimS.S. LopezA.D. LozanoR. MarczakL. MensahG.A. MokdadA.H. NaghaviM. NguyenG. NsoesieE. OlsenH. PigottD.M. PinhoC. RankinZ. ReinigN. SalomonJ.A. SandarL. SmithA. StanawayJ. SteinerC. TeepleS. ThomasB.A. TroegerC. WagnerJ.A. WangH. WangaV. WhitefordH.A. ZoecklerL. AbajobirA.A. AbateK.H. AbbafatiC. AbbasK.M. Abd-AllahF. AbrahamB. AbubakarI. Abu-RaddadL.J. Abu-RmeilehN.M.E. AckermanI.N. AdebiyiA.O. AdemiZ. AdouA.K. AfanviK.A. AgardhE.E. AgarwalA. KiadaliriA.A. AhmadiehH. AjalaO.N. AkinyemiR.O. AkseerN. Al-AlyZ. AlamK. AlamN.K.M. AldhahriS.F. AlegrettiM.A. AlemuZ.A. AlexanderL.T. AlhabibS. AliR. AlkerwiA. AllaF. AllebeckP. Al-RaddadiR. AlsharifU. AltirkawiK.A. Alvis-GuzmanN. AmareA.T. AmberbirA. AminiH. AmmarW. AmrockS.M. AndersenH.H. AndersonG.M. AndersonB.O. AntonioC.A.T. AregayA.F. ÄrnlövJ. ArtamanA. AsayeshH. AssadiR. AtiqueS. AvokpahoE.F.G.A. AwasthiA. QuintanillaB.P.A. AzzopardiP. BachaU. BadawiA. BalakrishnanK. BanerjeeA. BaracA. Barker-ColloS.L. BärnighausenT. BarregardL. BarreroL.H. BasuA. Bazargan-HejaziS. BeghiE. BellB. BellM.L. BennettD.A. BensenorI.M. BenzianH. BerhaneA. BernabéE. BetsuB.D. BeyeneA.S. BhalaN. BhattS. BiadgilignS. BienhoffK. BikbovB. BiryukovS. BisanzioD. BjertnessE. BloreJ. BorschmannR. BoufousS. BraininM. BrazinovaA. BreitbordeN.J.K. BrownJ. BuchbinderR. BuckleG.C. ButtZ.A. CalabriaB. Campos-NonatoI.R. CampuzanoJ.C. CarabinH. CárdenasR. CarpenterD.O. CarreroJ.J. Castañeda-OrjuelaC.A. RivasJ.C. Catalá-LópezF. ChangJ-C. ChiangP.P-C. ChibuezeC.E. ChisumpaV.H. ChoiJ-Y.J. ChowdhuryR. ChristensenH. ChristopherD.J. CiobanuL.G. CirilloM. CoatesM.M. ColquhounS.M. CooperC. CortinovisM. CrumpJ.A. DamtewS.A. DandonaR. DaoudF. DarganP.I. das NevesJ. DaveyG. DavisA.C. LeoD.D. DegenhardtL. GobboL.C.D. DellavalleR.P. DeribeK. DeribewA. DerrettS. JarlaisD.C.D. DharmaratneS.D. DhillonP.K. Diaz-TornéC. DingE.L. DriscollT.R. DuanL. DubeyM. DuncanB.B. EbrahimiH. EllenbogenR.G. ElyazarI. EndresM. EndriesA.Y. ErmakovS.P. EshratiB. EstepK. FaridT.A. FarinhaC.S.S. FaroA. FarvidM.S. FarzadfarF. FeiginV.L. FelsonD.T. FereshtehnejadS-M. FernandesJ.G. FernandesJ.C. FischerF. FitchettJ.R.A. ForemanK. FowkesF.G.R. FoxJ. FranklinR.C. FriedmanJ. FrostadJ. FürstT. FutranN.D. GabbeB. GangulyP. GankpéF.G. GebreT. GebrehiwotT.T. GebremedhinA.T. GeleijnseJ.M. GessnerB.D. GibneyK.B. GinawiI.A.M. GirefA.Z. GiroudM. GishuM.D. GiussaniG. GlaserE. GodwinW.W. Gomez-DantesH. GonaP. GoodridgeA. GopalaniS.V. GotayC.C. GotoA. GoudaH.N. GraingerR. GreavesF. GuilleminF. GuoY. GuptaR. GuptaR. GuptaV. GutiérrezR.A. HaileD. HailuA.D. HailuG.B. HalasaY.A. HamadehR.R. HamidiS. HammamiM. HancockJ. HandalA.J. HankeyG.J. HaoY. HarbH.L. HarikrishnanS. HaroJ.M. HavmoellerR. HayR.J. Heredia-PiI.B. HeydarpourP. HoekH.W. HorinoM. HoritaN. HosgoodH.D. HoyD.G. HtetA.S. HuangH. HuangJ.J. HuynhC. IannaroneM. IburgK.M. InnosK. InoueM. IyerV.J. JacobsenK.H. JahanmehrN. JakovljevicM.B. JavanbakhtM. JayaramanS.P. JayatillekeA.U. JeeS.H. JeemonP. JensenP.N. JiangY. JibatT. Jimenez-CoronaA. JinY. JonasJ.B. KabirZ. KalkondeY. KamalR. KanH. KarchA. KaremaC.K. KarimkhaniC. KasaeianA. KaulA. KawakamiN. KeiyoroP.N. KempA.H. KerenA. KesavachandranC.N. KhaderY.S. KhanA.R. KhanE.A. KhangY-H. KheraS. KhojaT.A.M. KhubchandaniJ. KielingC. KimP. KimC. KimD. KimY.J. KissoonN. KnibbsL.D. KnudsenA.K. KokuboY. KolteD. KopecJ.A. KosenS. KotsakisG.A. KoulP.A. KoyanagiA. KravchenkoM. DefoB.K. BicerB.K. KudomA.A. KuipersE.J. KumarG.A. KutzM. KwanG.F. LalA. LallooR. LallukkaT. LamH. LamJ.O. LanganS.M. LarssonA. LavadosP.M. LeasherJ.L. LeighJ. LeungR. LeviM. LiY. LiY. LiangJ. LiuS. LiuY. LloydB.K. LoW.D. LogroscinoG. LookerK.J. LotufoP.A. LuneviciusR. LyonsR.A. MackayM.T. MagdyM. RazekA.E. MahdaviM. MajdanM. MajeedA. MalekzadehR. MarcenesW. MargolisD.J. Martinez-RagaJ. MasiyeF. MassanoJ. McGarveyS.T. McGrathJ.J. McKeeM. McMahonB.J. MeaneyP.A. MehariA. Mejia-RodriguezF. MekonnenA.B. MelakuY.A. MemiahP. MemishZ.A. MendozaW. MeretojaA. MeretojaT.J. MhimbiraF.A. MillearA. MillerT.R. MillsE.J. MirarefinM. MitchellP.B. MockC.N. MohammadiA. MohammedS. MonastaL. HernandezJ.C.M. MonticoM. MooneyM.D. Moradi-LakehM. MorawskaL. MuellerU.O. MullanyE. MumfordJ.E. MurdochM.E. NachegaJ.B. NagelG. NaheedA. NaldiL. NangiaV. NewtonJ.N. NgM. NgalesoniF.N. NguyenQ.L. NisarM.I. PeteP.M.N. NollaJ.M. NorheimO.F. NormanR.E. NorrvingB. NunesB.P. OgboF.A. OhI-H. OhkuboT. OlivaresP.R. OlusanyaB.O. OlusanyaJ.O. OrtizA. OsmanM. OtaE. PaM. ParkE-K. ParsaeianM. de Azeredo PassosV.M. CaicedoA.J.P. PattenS.B. PattonG.C. PereiraD.M. Perez-PadillaR. PericoN. PesudovsK. PetzoldM. PhillipsM.R. PielF.B. PillayJ.D. PishgarF. PlassD. Platts-MillsJ.A. PolinderS. PondC.D. PopovaS. PoultonR.G. PourmalekF. PrabhakaranD. PrasadN.M. QorbaniM. RabieeR.H.S. RadfarA. RafayA. RahimiK. Rahimi-MovagharV. RahmanM. RahmanM.H.U. RahmanS.U. RaiR.K. RajsicS. RamU. RaoP. RefaatA.H. ReitsmaM.B. RemuzziG. ResnikoffS. ReynoldsA. RibeiroA.L. BlancasM.J.R. RobaH.S. Rojas-RuedaD. RonfaniL. RoshandelG. RothG.A. RothenbacherD. RoyA. SagarR. SahathevanR. SanabriaJ.R. Sanchez-NiñoM.D. SantosI.S. SantosJ.V. Sarmiento-SuarezR. SartoriusB. SatpathyM. SavicM. SawhneyM. SchaubM.P. SchmidtM.I. SchneiderI.J.C. SchöttkerB. SchwebelD.C. ScottJ.G. SeedatS. SepanlouS.G. Servan-MoriE.E. ShackelfordK.A. ShaheenA. ShaikhM.A. SharmaR. SharmaU. ShenJ. ShepardD.S. ShethK.N. ShibuyaK. ShinM-J. ShiriR. ShiueI. ShrimeM.G. SigfusdottirI.D. SilvaD.A.S. SilveiraD.G.A. SinghA. SinghJ.A. SinghO.P. SinghP.K. SivondaA. SkirbekkV. SkogenJ.C. SligarA. SliwaK. SoljakM. SøreideK. SorensenR.J.D. SorianoJ.B. SposatoL.A. SreeramareddyC.T. StathopoulouV. SteelN. SteinD.J. SteinerT.J. SteinkeS. StovnerL. StroumpoulisK. SunguyaB.F. SurP. SwaminathanS. SykesB.L. SzoekeC.E.I. Tabarés-SeisdedosR. TakalaJ.S. TandonN. TanneD. TavakkoliM. TayeB. TaylorH.R. AoB.J.T. TedlaB.A. TerkawiA.S. ThomsonA.J. Thorne-LymanA.L. ThriftA.G. ThurstonG.D. Tobe-GaiR. TonelliM. Topor-MadryR. TopouzisF. TranB.X. TruelsenT. DimbueneZ.T. TsilimbarisM. TuraA.K. TuzcuE.M. TyrovolasS. UkwajaK.N. UndurragaE.A. UnekeC.J. UthmanO.A. van GoolC.H. VarakinY.Y. VasankariT. VenketasubramanianN. VermaR.K. ViolanteF.S. VladimirovS.K. VlassovV.V. VollsetS.E. WagnerG.R. WallerS.G. WangL. WatkinsD.A. WeichenthalS. WeiderpassE. WeintraubR.G. WerdeckerA. WestermanR. WhiteR.A. WilliamsH.C. WiysongeC.S. WolfeC.D.A. WonS. WoodbrookR. WubshetM. XavierD. XuG. YadavA.K. YanL.L. YanoY. YaseriM. YeP. YebyoH.G. YipP. YonemotoN. YoonS-J. YounisM.Z. YuC. ZaidiZ. ZakiM.E.S. ZeebH. ZhouM. ZodpeyS. ZuhlkeL.J. MurrayC.J.L. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015.Lancet2016388100531545160210.1016/S0140‑6736(16)31678‑627733282
    [Google Scholar]
  7. a HsuD. Primary and secondary prevention trials in Alzheimer disease: Looking back, moving forward.Curr Alzheimer Res201714442644010.2174/156720501366616093011212527697063
    [Google Scholar]
  8. bEstimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: An analysis for the Global Burden of Disease Study 2019.Lancet Public Health202272e105e12510.1016/S2468‑2667(21)00249‑834998485
    [Google Scholar]
  9. PageM.J. McKenzieJ.E. BossuytP.M. BoutronI. HoffmannT.C. MulrowC.D. ShamseerL. TetzlaffJ.M. AklE.A. BrennanS.E. ChouR. GlanvilleJ. GrimshawJ.M. HróbjartssonA. LaluM.M. LiT. LoderE.W. Mayo-WilsonE. McDonaldS. McGuinnessL.A. StewartL.A. ThomasJ. TriccoA.C. WelchV.A. WhitingP. MoherD. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews.PLoS Med.2021183100358310.1371/journal.pmed.100358333780438
    [Google Scholar]
  10. a BossuytP.M. ReitsmaJ.B. BrunsD.E. STARD 2015: an updated list of essential items for reporting diagnostic accuracy studies.BMJ2015351h552710.1136/bmj.h5527265115192015
    [Google Scholar]
  11. b TorgoL. RibeiroR.P. PfahringerB. SMOTE for Regression.Progress in Artificial Intelligence. EPIA 2013Springer, Berlin, Heidelberg, 2013, vol. 8154, pp. 378-389.10.1007/978‑3‑642‑40669‑0_33
    [Google Scholar]
  12. cAdaptive synthetic sampling approach for imbalanced learning.2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence)Hong Kong, 01-08 June 2008, pp. 1322-132810.1109/IJCNN.2008.4633969
    [Google Scholar]
  13. AgarwalD. BerbisM.A. Martín-NoguerolT. LunaA. GarciaS.C.P. de la Torre-DíezI. End-to-end deep learning architectures using 3d neuroimaging biomarkers for early alzheimer’s diagnosis.Mathematics20221015257510.3390/math10152575
    [Google Scholar]
  14. BiswasR. Gini JR. Multi-class classification of Alzheimer’s disease detection from 3D MRI image using ML techniques and its performance analysis.Multimedia Tools Appl.20238311335273355410.1007/s11042‑023‑16519‑y
    [Google Scholar]
  15. QinZ. LiuZ. GuoQ. ZhuP. 3D convolutional neural networks with hybrid attention mechanism for early diagnosis of Alzheimer’s disease.Biomed. Signal Process. Control20227710382810.1016/j.bspc.2022.103828
    [Google Scholar]
  16. El-SappaghS. AlonsoJ.M. IslamS.M.R. SultanA.M. KwakK.S. A multilayer multimodal detection and prediction model based on explainable artificial intelligence for Alzheimer’s disease.Sci. Rep.2021111266010.1038/s41598‑021‑82098‑333514817
    [Google Scholar]
  17. LoddoA. ButtauS. Di RubertoC. Deep learning based pipelines for Alzheimer’s disease diagnosis: A comparative study and a novel deep-ensemble method.Comput. Biol. Med.202214110503210.1016/j.compbiomed.2021.10503234838263
    [Google Scholar]
  18. AlhudhaifA. PolatK. Residual block fully connected DCNN with categorical generalized focal dice loss and its application to Alzheimer’s disease severity detection.PeerJ Comput. Sci.20239159910.7717/peerj‑cs.159938077566
    [Google Scholar]
  19. AwarayiN.S. TwumF. Hayfron-AcquahJ.B. Owusu-AgyemangK. A bilateral filtering-based image enhancement for Alzheimer disease classification using CNN.PLoS One2024194030235810.1371/journal.pone.030235838640105
    [Google Scholar]
  20. AbdulAzeemY. BahgatW.M. BadawyM. A CNN based framework for classification of Alzheimer’s disease.Neural Comput. Appl.20213316104151042810.1007/s00521‑021‑05799‑w
    [Google Scholar]
  21. WalaaN. A meta-heuristic multi- objective optimization method for alzheimer’s disease detection based on multi-modal data.Mathematics202311495710.3390/math11040957
    [Google Scholar]
  22. GoyalP. RaniR. SinghK. A multilayered framework for diagnosis and classification of Alzheimer’s disease using transfer learned Alexnet and LSTM.Neural Comput. Appl.20243673777380110.1007/s00521‑023‑09301‑6
    [Google Scholar]
  23. KayaM Çetın-KayaY. A novel deep learning architecture optimization for multiclass classification of Alzheimer’s disease level.IEEE Access2024124656246581
    [Google Scholar]
  24. IslamF. RahmanM.H. A novel method for diagnosing alzheimer’s disease from mri scans using the resnet50 feature extractor and the svm classifier.Int. J. Adv. Comput. Sci. Appl.202314610.14569/IJACSA.2023.01406131
    [Google Scholar]
  25. KhanR. QaisarZ.H. MehmoodA. AliG. AlkhalifahT. AlturiseF. WangL. A practical multiclass classification network for the diagnosis of alzheimer’s disease.Appl. Sci.20221213650710.3390/app12136507
    [Google Scholar]
  26. El-LatifA.A.A. ChellougS.A. AlabdulhafithM. HammadM. Accurate detection of alzheimer’s disease using lightweight deep learning model on mri data.Diagnostics2023137121610.3390/diagnostics1307121637046434
    [Google Scholar]
  27. PanD. LuoG. ZengA. ZouC. LiangH. WangJ. ZhangT. YangB. Adaptive 3dcnn-based interpretable ensemble model for early diagnosis of alzheimer’s disease.IEEE Trans. Comput. Soc. Syst.202411124726610.1109/TCSS.2022.322399939239536
    [Google Scholar]
  28. FareedMMS ZikriaS AhmedG ADD-Net: An effective deep learning model for early detection of Alzheimer disease in MRI scans.IEEE AccessPP991110.1109/ACCESS.2022.3204395
    [Google Scholar]
  29. KhatriU. KwonG.R. Alzheimer’s disease diagnosis and biomarker analysis using resting-state functional MRI functional brain network with multi-measures features and hippocampal subfield and amygdala volume of structural MRI.Front. Aging Neurosci.20221481887110.3389/fnagi.2022.81887135707703
    [Google Scholar]
  30. Javed Mehedi ShamratFM AlzheimerNet: An effective deep learning based proposition for Alzheimer’s disease stages classification from functional brain changes in magnetic resonance images.IEEE Access202311163761639510.1109/ACCESS.2023.3244952
    [Google Scholar]
  31. SalehiW. BaglatP. GuptaG. KhanS.B. AlmusharrafA. AlqahtaniA. KumarA. An approach to binary classification of alzheimer’s disease using LSTM.Bioengineering202310895010.3390/bioengineering1008095037627835
    [Google Scholar]
  32. KumariR. NigamA. PushkarS. An efficient combination of quadruple biomarkers in binary classification using ensemble machine learning technique for early onset of Alzheimer disease.Neural Comput. Appl.20223414118651188410.1007/s00521‑022‑07076‑w
    [Google Scholar]
  33. GoyalP. RaniR. SinghK. An efficient ranking-based ensembled multiclassifier for neurodegenerative diseases classification using deep learning.J. Neural Transm.202412739249515
    [Google Scholar]
  34. GamalA ElattarM SelimS Automatic early diagnosis of Alzheimer’s disease using 3D deep ensemble approach.IEEE Access20221011597411598710.1109/ACCESS.2022.3218621
    [Google Scholar]
  35. TurksonR.E. QuH. MawuliC.B. EghanM.J. Eghan. Classification of alzheimer’s disease using deep convolutional spiking neural network.Neural Process. Lett.20215342649266310.1007/s11063‑021‑10514‑w
    [Google Scholar]
  36. SorourS.E. El-MageedA.A.A. AlbarrakK.M. AlnaimA.K. WafaA.A. El-ShafeiyE. Classification of Alzheimer’s disease using MRI data based on Deep Learning techniques.J. King Saud Univ. Comput. Inf. Sci.202436210194010.1016/j.jksuci.2024.101940
    [Google Scholar]
  37. TajammalT. KhurshidS.K. JaleelA. Qayyum WahlaS. ZiarR.A. Deep learning-based ensembling technique to classify alzheimer’s disease stages using functional MRI.J. Healthc. Eng.202320231696134610.1155/2023/696134637953911
    [Google Scholar]
  38. GhaffariH. TavakoliH. Pirzad JahromiG. Deep transfer learning–based fully automated detection and classification of Alzheimer’s disease on brain MRI.Br. J. Radiol.20229511362021125310.1259/bjr.2021125335616643
    [Google Scholar]
  39. ChabibCM HadjileontiadisLJ ShehhiAA DeepCurvMRI: Deep convolutional curvelet transform-based MRI approach for early detection of Alzheimer’s disease.IEEE Access202311446504465910.1109/ACCESS.2023.3272482
    [Google Scholar]
  40. Al-OtaibiS MujahidM KhanAR NobaneeH AlyamiJ SabaT Dual attention convolutional autoencoder for diagnosis of Alzheimer’s disorder in patients using neuroimaging and MRI features.IEEE AccessPP991110.1109/ACCESS.2024.3390186
    [Google Scholar]
  41. ThangavelP. NatarajanY. Sri PreethaaK.R. EAD-DNN: Early Alzheimer’s disease prediction using deep neural networks.Biomed. Signal Process. Control20238610521510.1016/j.bspc.2023.105215
    [Google Scholar]
  42. BoudiA. HeJ. El KaderI.A. Enhancing alzheimer’s disease classification with transfer learning: Finetuning a pre-trained algorithm.Curr. Med. Imaging2024201573405630563310.2174/011573405630563324060306164438874032
    [Google Scholar]
  43. PandeyP.K. PruthiJ. AlzahraniS. VermaA. ZohraB. Enhancing healthcare recommendation: Transfer learning in deep convolutional neural networks for Alzheimer disease detection.Front. Med.202411144532510.3389/fmed.2024.144532539371344
    [Google Scholar]
  44. ParvathamN.K. MaguluriL.P. Improved decision support system for alzheimer’s diagnosis using a hybrid machine learning approach with structural mri brain scans.Int. J. Adv. Comput. Sci. Appl.202415810.14569/IJACSA.2024.0150847
    [Google Scholar]
  45. BasheeraS. Satya Sai RamM. Leung-malik features and adaboost perform classification of alzheimer’s disease stages.J. Inst. Electron. Telecommun. Eng.20247021607162110.1080/03772063.2022.2154284
    [Google Scholar]
  46. FanZ. LiJ. ZhangL. ZhuG. LiP. LuX. ShenP. ShahS.A.A. BennamounM. HuaT. WeiW. U-net based analysis of MRI for Alzheimer’s disease diagnosis.Neural Comput. Appl.20213320135871359910.1007/s00521‑021‑05983‑y
    [Google Scholar]
  47. MahimSM AliMS HasanMO Unlocking the potential of XAI for improved Alzheimer’s disease detection and classification using a ViT-GRU model.IEEE Access2024128390841210.1109/ACCESS.2024.3351809
    [Google Scholar]
  48. MehmoodA. ShahidF. KhanR. IbrahimM.M. ZhengZ. Utilizing siamese 4d-alznet and transfer learning to identify stages of alzheimer’s disease.Neuroscience2024545698510.1016/j.neuroscience.2024.03.00738492797
    [Google Scholar]
  49. ChatterjeeS. ByunY.C. Voting ensemble approach for enhancing alzheimer’s disease classification.Sensors20222219766110.3390/s2219766136236757
    [Google Scholar]
  50. AparnaM. Srinivasa RaoB. Xception-fractalnet: Hybrid deep learning based multi-class classification of alzheimer’s disease.Comput. Mater. Continua20237436909693210.32604/cmc.2023.034796
    [Google Scholar]
  51. CaoT. LiuX. DuZ. ZhouJ. ZhengJ. XuL. A diagonal structured-state-space-sequence-model based deep learning framework for effective diagnosis of mild cognitive impairment.IEEE Sens. J.20242410167341674310.1109/JSEN.2024.3387103
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056359358250516101749
Loading
/content/journals/cmir/10.2174/0115734056359358250516101749
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test