Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background

Post-hepatic resection liver failure (PHLF) remains one of the most serious complications after hepatic resection, with an overall morbidity rate as high as 32% and an approximate 5% mortality. Previous studies demonstrate the potential of shear wave elastography (SWE) to predict PHLF. This meta-analysis aimed to evaluate the diagnostic accuracy of SWE in identifying liver failure after hepatectomy.

Methods

A comprehensive search was performed across PubMed/Medline, Embase, and Web of Science to identify studies assessing the diagnostic accuracy of SWE for predicting PHLF. The combined sensitivity, specificity, and the hierarchical summary receiver operating characteristic curve (HSROC) for SWE in detecting PHLF in liver resection patients. The Quality Assessment of Diagnostic Accuracy Studies tool was used to evaluate the quality of the studies included in the analysis. Heterogeneity was explored through sensitivity analysis, univariable meta-regression and subgroup analysis.

Results

This meta-analysis included a total of 13 studies involving 2985 patients. For quantitative analysis. The combined sensitivities and specificities of SWE for detecting post-hepatectomy liver failure were 0.81 and 0.68, respectively. The HSROC value for SWE was 0.82. Significant heterogeneity (I2 = 80.22) was observed in pooled specificity. Meta-regression and subgroup analyses suggest that differences in the proportion of patients with HCC and in the diagnostic criteria for PHLF may account for the observed heterogeneity. For the qualitative analysis, six predictive models based on SWE were included, and their AUCs were 0.80-0.915.

Conclusion

Both SWE alone and SWE-based prediction models appear to accurately detect PHLF and help to categorize patients into high- and low-risk groups. It may also assist surgeons in identifying the best candidates for liver resection and enhancing perioperative management.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0)
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056379123250626163120
2025-07-02
2025-09-13
Loading full text...

Full text loading...

/deliver/fulltext/cmir/21/1/CMIR-21-E15734056379123.html?itemId=/content/journals/cmir/10.2174/0115734056379123250626163120&mimeType=html&fmt=ahah

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  2. BruixJ. ReigM. ShermanM. Evidence-based diagnosis, staging, and treatment of patients with hepatocellular carcinoma.Gastroenterology2016150483585310.1053/j.gastro.2015.12.04126795574
    [Google Scholar]
  3. HyunM.H. LeeY.S. KimJ.H. LeeC.U. JungY.K. SeoY.S. YimH.J. YeonJ.E. ByunK.S. Hepatic resection compared to chemoembolization in intermediate- to advanced-stage hepatocellular carcinoma: A meta-analysis of high-quality studies.Hepatology201868397799310.1002/hep.2988329543988
    [Google Scholar]
  4. QadanM. GardenJ.O. CorveraC.U. VisserB.C. Management of postoperative hepatic failure.J. Am. Coll. Surg.2016222219520810.1016/j.jamcollsurg.2015.11.00726705902
    [Google Scholar]
  5. LongH. PengC. DingH. ZhengY. ZhouJ. ChenW. ZhongX. ShiY. DuanY. XieX. KuangM. XieX. LinM. Predicting symptomatic post-hepatectomy liver failure in patients with hepatocellular carcinoma: Development and validation of a preoperative nomogram.Eur. Radiol.202333117665767410.1007/s00330‑023‑09803‑w37314474
    [Google Scholar]
  6. GalleP.R. FornerA. LlovetJ.M. MazzaferroV. PiscagliaF. RaoulJ-L. SchirmacherP. VilgrainV. Electronic address: [email protected]; European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma.J. Hepatol.201869118223610.1016/j.jhep.2018.03.01929628281
    [Google Scholar]
  7. FagensonA.M. GleesonE.M. PittH.A. LauK.N. Albumin-bilirubin score vs model for end-stage liver disease in predicting post-hepatectomy outcomes.J. Am. Coll. Surg.2020230463764510.1016/j.jamcollsurg.2019.12.00731954813
    [Google Scholar]
  8. IbisC. AlbayrakD. SahinerT. SoytasY. GurtekinB. SivrikozN. Value of preoperative indocyanine green clearance test for predicting posthepatectomy liver failure in noncirrhotic patients.Med. Sci. Monit.2017234973498010.12659/MSM.90730629042529
    [Google Scholar]
  9. GranieriS. BracchettiG. KersikA. FrassiniS. GerminiA. BonomiA. LomaglioL. GjoniE. FrontaliA. BrunoF. PaleinoS. CotsoglouC. Preoperative indocyanine green (ICG) clearance test: Can we really trust it to predict post hepatectomy liver failure? A systematic review of the literature and meta-analysis of diagnostic test accuracy.Photodiagn. Photodyn. Ther.20224010317010.1016/j.pdpdt.2022.10317036302467
    [Google Scholar]
  10. HobeikaC. FuksD. CauchyF. GoumardC. SoubraneO. GayetB. SalaméE. CherquiD. VibertE. ScattonO. NomiT. OudafalN. KawaiT. KomatsuS. OkumuraS. PetruccianiN. LaurentA. BucurP. BarbierL. TrechotB. NunèzJ. TedeschiM. AllardM-A. GolseN. CiacioO. PittauG. CunhaA.S. AdamR. LaurentC. ChicheL. LeourierP. RebiboL. RegimbeauJ-M. FerreL. SoucheF.R. ChauvatJ. FabreJ-M. JehaesF. MohkamK. LesurtelM. DucerfC. MabrutJ-Y. HorT. PayeF. BalladurP. SucB. MuscariF. MilletG. El AmraniM. RatajczakC. LecolleK. BoleslawskiE. TruantS. PruvotF-R. KianmaneshA-R. CodjiaT. SchwarzL. GirardE. AbbaJ. LetoublonC. ChiricaM. CarmeloA. VanBruggheC. CherkaouiZ. UnterteinerX. MemeoR. PessauxP. BucE. LermiteE. BarbieuxJ. BougardM. MarcheseU. EwaldJ. TuriniO. ThobieA. MenahemB. MulliriA. LubranoJ. ZemourJ. FagotH. PassotG. GregoireE. HardwigsenJ. TreutY-P. PatriceD. Impact of cirrhosis in patients undergoing laparoscopic liver resection in a nationwide multicentre survey.Br. J. Surg.2020107326827710.1002/bjs.1140631916594
    [Google Scholar]
  11. Melekoglu EllikZ. IdilmanI.S. KartalA. BalabanY. ElhanA.H. KarcaaltincabaM. OzkanH. IdilmanR. Evaluation of magnetic resonance elastography and transient elastography for liver fibrosis and steatosis assessments in the liver transplant setting.Turk. J. Gastroenterol.202233215316010.5152/tjg.2022.2170535238782
    [Google Scholar]
  12. OzturkA. OlsonM.C. SamirA.E. VenkateshS.K. Liver fibrosis assessment: MR and US elastography.Abdom. Radiol.20214793037305010.1007/s00261‑021‑03269‑434687329
    [Google Scholar]
  13. YuJ.H. LeeH.A. KimS.U. Noninvasive imaging biomarkers for liver fibrosis in nonalcoholic fatty liver disease: Current and future.Clin. Mol. Hepatol.202329Suppl.S136S14910.3350/cmh.2022.043636503205
    [Google Scholar]
  14. SelvarajE.A. MózesF.E. JayaswalA.N.A. ZafarmandM.H. ValiY. LeeJ.A. LevickC.K. YoungL.A.J. PalaniyappanN. LiuC.H. AithalG.P. Romero-GómezM. BrosnanM.J. TuthillT.A. AnsteeQ.M. NeubauerS. HarrisonS.A. BossuytP.M. PavlidesM. AnsteeQ. DalyA. JohnsonK. GovaereO. CockellS. TiniakosD. BedossaP. OakleyF. CordellH. DayC. WondersK. BossuytP. ZafarmandH. ValiY. LeeJ. RatziuV. ClementK. PaisR. SchuppanD. SchattenbergJ. Vidal-PuigT. VaccaM. Rodrigues-CuencaS. AllisonM. KamzolasI. PetsalakiE. OresicM. HyötyläinenT. McGlincheyA. MatoJ.M. MilletO. DufourJ-F. BerzigottiA. PavlidesM. HarrisonS. NeubauerS. CobboldJ. MozesF. AkhtarS. BanerjeeR. KellyM. ShumbayawondaE. DennisA. ErpicumC. Romero-GómezM. Gómez-GonzálezE. AmpueroJ. CastellJ. Gallego-DuránR. FernándezI. Montero-VallejoR. KarsdalM. ErhardtsenE. RasmussenD. LeemingD.J. FiskerM.J. SinisiA. MusaK. BetsouF. SandtE. ToniniM. BugianesiE. RossoC. ArmandiA. MarraF. GastaldelliA. SvegliatiG. BoursierJ. FrancqueS. VonghiaL. EkstedtM. KechagiasS. Yki-JarvinenH. LuukkonenP. van MilS. PapatheodoridisG. Cortez-PintoH. ValentiL. PettaS. MieleL. GeierA. TrautweinC. AithalG. HockingsP. NewsomeP. WennD. Pereira RodriguesC.M. ChaumatP. HanfR. TrylesinskiA. OrtizP. DuffinK. BrosnanJ. TuthillT. McLeodE. ErtleJ. YounesR. OstroffR. AlexanderL. KjærM.S. MikkelsenL.F. BalpM-M. BrassC. JenningsL. MarticM. LoefflerJ. HanauerG. ShankarS. FournierC. PepinK. EhmanR. MyersJ. HoG. TorstensonR. MyersR. DowardL. Diagnostic accuracy of elastography and magnetic resonance imaging in patients with NAFLD: A systematic review and meta-analysis.J. Hepatol.202175477078510.1016/j.jhep.2021.04.04433991635
    [Google Scholar]
  15. LiangJ. QiuB. YinS. ChenY. ZhangS. Predictive value of liver stiffness measurement by magnetic resonance elastography for complications after liver resection: A systematic review and meta-analysis.Digestion2022103535736610.1159/00052508135780768
    [Google Scholar]
  16. TapperE.B. LoombaR. Noninvasive imaging biomarker assessment of liver fibrosis by elastography in NAFLD.Nat. Rev. Gastroenterol. Hepatol.201815527428210.1038/nrgastro.2018.1029463906
    [Google Scholar]
  17. MingkaiL. SizheW. XiaoyingW. YingL. WuB. Diagnostic performance of elastography on liver fibrosis in antiviral treatment-naive chronic hepatitis B patients: A meta-analysis.Gastroenterol. Rep.2022101goac00510.1093/gastro/goac00535186298
    [Google Scholar]
  18. ShiY. LongH. ZhongX. PengJ. SuL. DuanY. KeW. XieX. LinM. The value of liver stiffness measured by two-dimensional shear wave elastography for predicting symptomatic posthepatectomy liver failure in patients with hepatocellular carcinoma.Eur. J. Radiol.202215011024810.1016/j.ejrad.2022.11024835299113
    [Google Scholar]
  19. NishioT. TauraK. KoyamaY. TanabeK. YamamotoG. OkudaY. IkenoY. SeoS. YasuchikaK. HatanoE. OkajimaH. KaidoT. TanakaS. UemotoS. Prediction of posthepatectomy liver failure based on liver stiffness measurement in patients with hepatocellular carcinoma.Surgery2016159239940810.1016/j.surg.2015.06.02426209567
    [Google Scholar]
  20. HigginsJ.P.T. GreenS. Cochrane handbook for systematic reviews of interventions.2011Available from: http://handbook.cochrane. org/
  21. SalamehJ.P. BossuytP.M. McGrathT.A. ThombsB.D. HydeC.J. MacaskillP. DeeksJ.J. LeeflangM. KorevaarD.A. WhitingP. TakwoingiY. ReitsmaJ.B. CohenJ.F. FrankR.A. HuntH.A. HooftL. RutjesA.W.S. WillisB.H. GatsonisC. LevisB. MoherD. McInnesM.D.F. Preferred reporting items for systematic review and meta-analysis of diagnostic test accuracy studies (PRISMA-DTA): Explanation, elaboration, and checklist.BMJ2020370m263210.1136/bmj.m263232816740
    [Google Scholar]
  22. ReitsmaJ.B. GlasA.S. RutjesA.W.S. ScholtenR.J.P.M. BossuytP.M. ZwindermanA.H. Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews.J. Clin. Epidemiol.2005581098299010.1016/j.jclinepi.2005.02.02216168343
    [Google Scholar]
  23. HigginsJ.P.T. ThompsonS.G. DeeksJ.J. AltmanD.G. Measuring inconsistency in meta-analyses.BMJ2003327741455756010.1136/bmj.327.7414.55712958120
    [Google Scholar]
  24. XueLY FuTT DingH Predictive value of two-dimensional shear wave elastography in posthepatectomy liver failure.Zhonghua Yi Xue Za Zhi2020100393075308010.3760/cma.j.cn112137‑20200228‑00506
    [Google Scholar]
  25. HocqueletA. FrulioN. GalloG. LaurentC. PapadopoulosP. SalutC. DenysA. TrillaudH. Point-shear wave elastography predicts liver hypertrophy after portal vein embolization and postoperative liver failure.Diagn. Interv. Imaging201899637137910.1016/j.diii.2018.01.00329402629
    [Google Scholar]
  26. ShenY. ZhouC. ZhuG. ShiG. ZhuX. HuangC. ZhouJ. FanJ. DingH. RenN. SunH.C. Liver stiffness assessed by shear wave elastography predicts postoperative liver failure in patients with hepatocellular carcinoma.J. Gastrointest. Surg.20172191471147910.1007/s11605‑017‑3443‑928510795
    [Google Scholar]
  27. HanH. HuH. XuY.D. WangW.P. DingH. LuQ. Liver failure after hepatectomy: A risk assessment using the pre-hepatectomy shear wave elastography technique.Eur. J. Radiol.20178623424010.1016/j.ejrad.2016.11.00628027753
    [Google Scholar]
  28. FuR. QiuT. LingW. LuQ. LuoY. Comparison of preoperative two-dimensional shear wave elastography, indocyanine green clearance test and biomarkers for post hepatectomy liver failure prediction in patients with hepatocellular carcinoma.BMC Gastroenterol.202121114210.1186/s12876‑021‑01727‑333789567
    [Google Scholar]
  29. QiuT. FuR. LingW. LiJ. SongJ. WuZ. ShiY. ZhouY. LuoY. Comparison between preoperative two-dimensional shear wave elastography and indocyanine green clearance test for prediction of post-hepatectomy liver failure.Quant. Imaging Med. Surg.20211151692170010.21037/qims‑20‑64033936957
    [Google Scholar]
  30. LeeD.H. LeeE.S. BaeJ.S. LeeJ.Y. HanJ.K. YiN.J. LeeK.W. SuhK.S. KimH. LeeK.B. ChoiB.I. 2D shear wave elastography is better than transient elastography in predicting post-hepatectomy complication after resection.Eur. Radiol.20213185802581110.1007/s00330‑020‑07662‑333459859
    [Google Scholar]
  31. ChengG.W. FangY. XueL.Y. ZhangY. XieX.Y. QiaoX.H. LiX.Q. GuoJ. DingH. Nomogram based on liver stiffness and spleen area with ultrasound for posthepatectomy liver failure: A multicenter study.World J. Gastroenterol.202430273314332510.3748/wjg.v30.i27.331439086747
    [Google Scholar]
  32. HuH. HanH. HanX.K. WangW.P. DingH. Nomogram for individualised prediction of liver failure risk after hepatectomy in patients with resectable hepatocellular carcinoma: The evidence from ultrasound data.Eur. Radiol.201828287788510.1007/s00330‑017‑4900‑228779402
    [Google Scholar]
  33. ZhongX. SalahuddinZ. ChenY. WoodruffH.C. LongH. PengJ. XieX. LinM. LambinP. An interpretable radiomics model based on two-dimensional shear wave elastography for predicting symptomatic post-hepatectomy liver failure in patients with hepatocellular carcinoma.Cancers20231521530310.3390/cancers1521530337958476
    [Google Scholar]
  34. PrimavesiF. MaglioneM. CiprianiF. DeneckeT. OberkoflerC.E. StarlingerP. DasariB.V.M. HeilJ. SgarburaO. SøreideK. Diaz-NietoR. FondevilaC. FramptonA.E. GeiselD. HenningerB. HessheimerA.J. LesurtelM. MoleD. ÖllingerR. OlthofP. ReibergerT. SchnitzbauerA.A. SchwarzC. SparrelidE. StockmannM. TruantS. AldrighettiL. BraunwarthE. D’HondtM. DeOliveiraM.L. ErdmannJ. FuksD. GruenbergerT. KaczirekK. MalikH. ÖfnerD. RahbariN.N. GöbelG. SiriwardenaA.K. StättnerS. E-AHPBA–ESSO–ESSR Innsbruck consensus guidelines for preoperative liver function assessment before hepatectomy.Br. J. Surg.2023110101331134710.1093/bjs/znad23337572099
    [Google Scholar]
  35. SøreideJ.A. DeshpandeR. Post hepatectomy liver failure (PHLF) – Recent advances in prevention and clinical management.Eur. J. Surg. Oncol.202147221622410.1016/j.ejso.2020.09.00132943278
    [Google Scholar]
  36. AfzaF SharifM KhanMA TariqU YongHS ChaJ Multiclass skin lesion classification using hybrid deep features selection and extreme learning machine.Sensors202222379910.3390/s22030799
    [Google Scholar]
  37. HuangJ.X. LuY. TanY.T. LiuF.T. LiY.L. WangX.Y. HuangJ.H. LinS.Y. HuangG.L. ZhangY.T. PeiX.Q. Elastography-based AI model can predict axillary status after neoadjuvant chemotherapy in breast cancer with nodal involvement: A prospective, multicenter, diagnostic study.Int. J. Surg.2025111122122910.1097/JS9.000000000000210539724577
    [Google Scholar]
  38. GolderH. CasanovaD. PapaloisV. Evaluation of the usefulness of the Clavien-Dindo classification of surgical complications.Cir. Esp. (Engl. Ed.)2023101963764210.1016/j.cireng.2023.02.00236781046
    [Google Scholar]
  39. GianiA. CiprianiF. FamularoS. DonadonM. BernasconiD.P. ArditoF. FazioF. NicoliniD. PerriP. GiuffridaM. PontaroloN. ZanelloM. LaiQ. ConciS. MolfinoS. GermaniP. PinottiE. RomanoM. La BarbaG. FerrariC. PataunerS. ManzoniA. SciannameaI. FumagalliL. TrociA. FerraroV. FloridiA. RomanoF. CiulliC. BragaM. RattiF. CostaG. RazionaleF. RussolilloN. MarinelliL. De PeppoV. CremaschiE. CalabreseF. Larghi LaureiroZ. LazzariG. CosolaD. MontuoriM. SalvadorL. CucchettiA. FranceschiA. CiolaM. SegaV. CalcagnoP. PennacchiL. TedeschiM. MemeoR. CrespiM. ChiarelliM. AntonucciA. ZimmittiG. FrenaA. PercivaleA. ErcolaniG. ZanusG. ZagoM. TarchiP. BaiocchiG.L. RuzzenenteA. RossiM. JovineE. MaestriM. Dalla ValleR. GraziG.L. VivarelliM. FerreroA. GiulianteF. TorzilliG. AldrighettiL. GianottiL. Performance of comprehensive complication index and clavien-dindo complication scoring system in liver surgery for hepatocellular carcinoma.Cancers20201212386810.3390/cancers1212386833371419
    [Google Scholar]
  40. AnJ. ChonY.E. KimG. KimM.N. KimH.Y. LeeH.A. YuJ.H. ChoiM. JunD.W. KimS.U. HanJ.W. JinY.J. Diagnostic accuracy of vibration-controlled transient elastography for staging liver fibrosis in autoimmune liver diseases: A systematic review and meta-analysis.Clin. Mol. Hepatol.202430Suppl.S134S14610.3350/cmh.2024.058639165158
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056379123250626163120
Loading
/content/journals/cmir/10.2174/0115734056379123250626163120
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test