Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Introduction

An accurate and reliable prognostic model for Nasal Extranodal Natural Killer/T-cell Lymphoma (ENKTL) is critical for survival outcomes and personalized therapy. Currently, there is no Magnetic Resonance Imaging (MRI)- based radiomics analysis in the prognosis model for nasal ENKTL patients.

Objective

We aim to explore the value of MRI-based radiomics signature in the prognosis of patients with nasal ENKTL.

Methods

A total of 159 nasal ENKTL patients were enrolled and divided into a training cohort (n=81) and a validation cohort (n=78) randomly. Radiomics features from pretreatment MRI examination were extracted, respectively. Then two-sample t-test and Least Absolute Shrinkage and Selection Operator (LASSO) regression were used to select the radiomics signatures and establish the Rad-score. Univariate and multivariate Cox proportional hazards regression models were used to investigate the prognostic value of baseline clinical features and establish clinical models. A radiomics nomogram based on the Rad-score and clinical features was constructed to predict Overall Survival (OS). The predictive efficacy of the three models was evaluated in two cohorts.

Results

A total of 1,345 features were extracted from T2-weighted (T2-w) and Contrast-enhanced T1-weighted (CET1-w) images, respectively, and 1,037 features with Intraclass Correlation Coefficient (ICC) >0.7 were selected. Ultimately, 20 features were chosen to construct the Rad-score, which showed a significant association with OS. The C-indexes of the Rad-score were 0.733 (95% confidence interval (CI): 0.645 to 0.816) and 0.824 (95% CI: 0.766-0.882), respectively, in training and validation cohorts. Through the univariate and multivariate analyses, three independent risk factors for OS were identified: Rad-score (HR: 10.962, 95% CI: 3.417-35.167, <0.001), lactate dehydrogenase (LDH) level (HR: 3.009, 95% CI: 1.128-8.510, = 0.028) and distant lymph-node involvement (HR: 2.966, 95% CI: 1.015-8.664, = 0.047). Patients with distal lymph node involvement and LDH level before treatment were included in the clinical model, which achieved a C-index of 0.707 (95% CI: 0.600–0.814) in the training cohort and 0.635 (95% CI: 0.527–0.743) in the validation cohort.

We integrated the Rad-score and clinical variables to establish a radiomics nomogram, which exhibited a satisfactory prediction performance with the C-indexes of 0.849(95% CI: 0.781-0.917) and 0.931 (95% CI: 0.882-0.980) in two cohorts, respectively. The radiomics nomogram was more accurate in predicting OS in patients with nasal ENKTL than the other two models. Based on the radiomics nomogram, patients were categorized into low-risk and high-risk groups in two cohorts ( all < 0.05). The high-risk group defined by this nomogram exhibited a shorter OS.

Conclusion

The Rad-score was significantly correlated with OS for nasal ENKTL patients. Moreover, the MRI-based radiomics nomogram could be used for risk stratification and might guide individual treatment decisions.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056319914250605053257
2025-06-19
2025-10-27
Loading full text...

Full text loading...

/deliver/fulltext/cmir/21/1/CMIR-21-E15734056319914.html?itemId=/content/journals/cmir/10.2174/0115734056319914250605053257&mimeType=html&fmt=ahah

References

  1. KwongY-L. Natural killer-cell malignancies: Diagnosis and treatment.Leukemia200519122186219410.1038/sj.leu.240395516179910
    [Google Scholar]
  2. WilliamB.M. ArmitageJ.O. International analysis of the frequency and outcomes of NK/T-cell lymphomas.Best Pract. Res. Clin. Haematol.2013261233210.1016/j.beha.2013.04.00323768638
    [Google Scholar]
  3. TseE. ZhaoW.L. XiongJ. KwongY.L. How we treat NK/T-cell lymphomas.J. Hematol. Oncol.20221517410.1186/s13045‑022‑01293‑535659326
    [Google Scholar]
  4. TseE. KwongY.L. Nasal NK/T-cell lymphoma: RT, CT, or both.Blood2015126121400140110.1182/blood‑2015‑07‑65519126384281
    [Google Scholar]
  5. KimS.J. YoonS.E. KimW.S. Treatment of localized extranodal NK/T cell lymphoma, nasal type: A systematic review.J. Hematol. Oncol.201811114010.1186/s13045‑018‑0687‑030567593
    [Google Scholar]
  6. JaccardA. GachardN. MarinB. RogezS. AudrainM. SuarezF. TillyH. MorschhauserF. ThieblemontC. YsebaertL. DevidasA. PetitB. de LevalL. GaulardP. FeuillardJ. BordessouleD. HermineO. GELA and GOELAMS Intergroup Efficacy of L-asparaginase with methotrexate and dexamethasone (AspaMetDex regimen) in patients with refractory or relapsing extranodal NK/T-cell lymphoma, a phase 2 study.Blood201111761834183910.1182/blood‑2010‑09‑30745421123825
    [Google Scholar]
  7. KimS.J. KimK. KimB.S. KimC.Y. SuhC. HuhJ. LeeS.W. KimJ.S. ChoJ. LeeG.W. KangK.M. EomH.S. PyoH.R. AhnY.C. KoY.H. KimW.S. Phase II trial of concurrent radiation and weekly cisplatin followed by VIPD chemotherapy in newly diagnosed, stage IE to IIE, nasal, extranodal NK/T-Cell Lymphoma: Consortium for Improving Survival of Lymphoma study.J. Clin. Oncol.200927356027603210.1200/JCO.2009.23.859219884539
    [Google Scholar]
  8. KwongY.L. KimW.S. LimS.T. KimS.J. TangT. TseE. LeungA.Y.H. ChimC.S. SMILE for natural killer/T-cell lymphoma: Analysis of safety and efficacy from the Asia Lymphoma Study Group.Blood2012120152973298010.1182/blood‑2012‑05‑43146022919026
    [Google Scholar]
  9. FoxC.P. BoumendilA. SchmitzN. FinelH. LuanJ.J. SucakG. BlaiseD. FinkeJ. PflügerK.H. VeelkenH. GorinN.C. PoiréX. GanserA. DregerP. SuredaA. High-dose therapy and autologous stem cell transplantation for extra-nodal NK/T lymphoma in patients from the Western hemisphere: A study from the European Society for Blood and Marrow Transplantation.Leuk. Lymphoma201556123295330010.3109/10428194.2015.103776425899403
    [Google Scholar]
  10. KimS.J. YoonD.H. KimJ.S. KangH.J. LeeH.W. EomH.S. HongJ.Y. ChoJ. KoY.H. HuhJ. YangW.I. ParkW.S. LeeS.S. SuhC. KimW.S. Efficacy of Brentuximab Vedotin in relapsed or refractory High-CD30–Expressing non-hodgkin lymphomas: results of a multicenter, open-labeled phase II trial.Cancer Res. Treat.202052237438710.4143/crt.2019.19831476851
    [Google Scholar]
  11. HuangH. ZhuJ. YaoM. KimT.M. YoonD.H. ChoS.G. EomH.S. LimS.T. YehS. SongY. KwongY.L. KimJ.S. JinJ. ShiY. KimH. QingM. ZhouT. GaoG. DongZ. QiM. KimW.S. Daratumumab monotherapy for patients with relapsed or refractory natural killer/T-cell lymphoma, nasal type: an open-label, single-arm, multicenter, phase 2 study.J. Hematol. Oncol.20211412510.1186/s13045‑020‑01020‑y33588922
    [Google Scholar]
  12. NagatoT. OhkuriT. OharaK. HirataY. KishibeK. KomabayashiY. UedaS. TakaharaM. KumaiT. IshibashiK. KosakaA. AokiN. OikawaK. UnoY. AkiyamaN. SadoM. TakeiH. CelisE. HarabuchiY. KobayashiH. Programmed death-ligand 1 and its soluble form are highly expressed in nasal natural killer/T-cell lymphoma: a potential rationale for immunotherapy.Cancer Immunol. Immunother.201766787789010.1007/s00262‑017‑1987‑x28349165
    [Google Scholar]
  13. O’ConnorO.A. HorwitzS. MassziT. Van HoofA. BrownP. DoorduijnJ. HessG. JurczakW. KnoblauchP. ChawlaS. BhatG. ChoiM.R. WalewskiJ. SavageK. FossF. AllenL.F. ShustovA. Belinostat in patients with relapsed or refractory peripheral T-Cell Lymphoma: Results of the pivotal phase II BELIEF (CLN-19) study.J. Clin. Oncol.201533232492249910.1200/JCO.2014.59.278226101246
    [Google Scholar]
  14. HorwitzS.M. AnsellS. AiW.Z. BarnesJ. BartaS.K. ClemensM.W. DoganA. GoodmanA.M. GoyalG. GuitartJ. HalwaniA. HaverkosB.M. HoppeR.T. JacobsenE. JagadeeshD. JonesA. KimY.H. Mehta-ShahN. OlsenE.A. ProB. RajguruS.A. RozatiS. SaidJ. ShaverA. ShustovA. SokolL. TorkaP. Torres-CabalaC. WilcoxR. WilliamB.M. ZainJ. DwyerM.A. SundarH. NCCN Guidelines insights: T-Cell lymphomas, version 1.2021.J. Natl. Compr. Canc. Netw.202018111460146710.6004/jnccn.2020.005333152703
    [Google Scholar]
  15. ChimC.S. MaS.Y. AuW.Y. ChoyC. LieA.K.W. LiangR. YauC.C. KwongY.L. Primary nasal natural killer cell lymphoma: long-term treatment outcome and relationship with the International Prognostic Index.Blood2004103121622110.1182/blood‑2003‑05‑140112933580
    [Google Scholar]
  16. LeeJ. SuhC. ParkY.H. KoY.H. BangS.M. LeeJ.H. LeeD.H. HuhJ. OhS.Y. KwonH.C. KimH.J. LeeS.I. KimJ.H. ParkJ. OhS.J. KimK. JungC. ParkK. KimW.S. Extranodal natural killer T-cell lymphoma, nasal-type: a prognostic model from a retrospective multicenter study.J. Clin. Oncol.200624461261810.1200/JCO.2005.04.138416380410
    [Google Scholar]
  17. KimS.J. YoonD.H. JaccardA. ChngW.J. LimS.T. HongH. ParkY. ChangK.M. MaedaY. IshidaF. ShinD.Y. KimJ.S. JeongS.H. YangD.H. JoJ.C. LeeG.W. ChoiC.W. LeeW.S. ChenT.Y. KimK. JungS.H. MurayamaT. OkiY. AdvaniR. d’AmoreF. SchmitzN. SuhC. SuzukiR. KwongY.L. LinT.Y. KimW.S. A prognostic index for natural killer cell lymphoma after non-anthracycline-based treatment: a multicentre, retrospective analysis.Lancet Oncol.201617338940010.1016/S1470‑2045(15)00533‑126873565
    [Google Scholar]
  18. YangY. ZhangY-J. ZhuY. CaoJ-Z. YuanZ-Y. XuL-M. WuJ-X. WangW. WuT. LuB. ZhuS-Y. QianL-T. ZhangF-Q. HouX-R. LiuQ-F. LiY-X. Prognostic nomogram for overall survival in previously untreated patients with extranodal NK/T-cell lymphoma, nasal-type: a multicenter study.Leukemia20152971571157710.1038/leu.2015.4425697894
    [Google Scholar]
  19. AertsH.J.W.L. VelazquezE.R. LeijenaarR.T.H. ParmarC. GrossmannP. CarvalhoS. BussinkJ. MonshouwerR. Haibe-KainsB. RietveldD. HoebersF. RietbergenM.M. LeemansC.R. DekkerA. QuackenbushJ. GilliesR.J. LambinP. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach.Nat. Commun.201451400610.1038/ncomms500624892406
    [Google Scholar]
  20. LambinP. Rios-VelazquezE. LeijenaarR. CarvalhoS. van StiphoutR.G.P.M. GrantonP. ZegersC.M.L. GilliesR. BoellardR. DekkerA. AertsH.J.W.L. Radiomics: Extracting more information from medical images using advanced feature analysis.Eur. J. Cancer201248444144610.1016/j.ejca.2011.11.03622257792
    [Google Scholar]
  21. AvanzoM. StancanelloJ. PirroneG. SartorG. Radiomics and deep learning in lung cancer.Strahlenther. Onkol.20201961087988710.1007/s00066‑020‑01625‑932367456
    [Google Scholar]
  22. TagliaficoA.S. PianaM. SchenoneD. LaiR. MassoneA.M. HoussamiN. Overview of radiomics in breast cancer diagnosis and prognostication.Breast202049748010.1016/j.breast.2019.10.01831739125
    [Google Scholar]
  23. PengH. DongD. FangM.J. LiL. TangL.L. ChenL. LiW.F. MaoY.P. FanW. LiuL.Z. TianL. LinA.H. SunY. TianJ. MaJ. Prognostic value of deep learning PET/CT-based radiomics: Potential role for future individual induction chemotherapy in advanced nasopharyngeal carcinoma.Clin. Cancer Res.201925144271427910.1158/1078‑0432.CCR‑18‑306530975664
    [Google Scholar]
  24. ZhangB. TianJ. DongD. GuD. DongY. ZhangL. LianZ. LiuJ. LuoX. PeiS. MoX. HuangW. OuyangF. GuoB. LiangL. ChenW. LiangC. ZhangS. Radiomics features of multiparametric MRI as novel prognostic factors in advanced nasopharyngeal carcinoma.Clin. Cancer Res.201723154259426910.1158/1078‑0432.CCR‑16‑291028280088
    [Google Scholar]
  25. HectorsS.J. ChernyM. YadavK.K. BeksaçA.T. ThulasidassH. LewisS. DavicioniE. WangP. TewariA.K. TaouliB. Radiomics features measured with multiparametric magnetic resonance imaging predict prostate cancer aggressiveness.J. Urol.2019202349850510.1097/JU.000000000000027230958743
    [Google Scholar]
  26. WangH. ZhaoS. LiL. TianR. Development and validation of an 18F-FDG PET radiomic model for prognosis prediction in patients with nasal-type extranodal natural killer/T cell lymphoma.Eur. Radiol.202030105578558710.1007/s00330‑020‑06943‑132435928
    [Google Scholar]
  27. van GriethuysenJ.J.M. FedorovA. ParmarC. HosnyA. AucoinN. NarayanV. Beets-TanR.G.H. Fillion-RobinJ.C. PieperS. AertsH.J.W.L. Computational radiomics system to decode the radiographic phenotype.Cancer Res.20177721e104e10710.1158/0008‑5472.CAN‑17‑033929092951
    [Google Scholar]
  28. SauerbreiW. RoystonP. BinderH. Selection of important variables and determination of functional form for continuous predictors in multivariable model building.Stat. Med.200726305512552810.1002/sim.314818058845
    [Google Scholar]
  29. VasquezM.M. HuC. RoeD.J. ChenZ. HalonenM. GuerraS. Least absolute shrinkage and selection operator type methods for the identification of serum biomarkers of overweight and obesity: simulation and application.BMC Med. Res. Methodol.201616115410.1186/s12874‑016‑0254‑827842498
    [Google Scholar]
  30. LambinP. LeijenaarR.T.H. DeistT.M. PeerlingsJ. de JongE.E.C. van TimmerenJ. SanduleanuS. LarueR.T.H.M. EvenA.J.G. JochemsA. van WijkY. WoodruffH. van SoestJ. LustbergT. RoelofsE. van ElmptW. DekkerA. MottaghyF.M. WildbergerJ.E. WalshS. Radiomics: The bridge between medical imaging and personalized medicine.Nat. Rev. Clin. Oncol.2017141274976210.1038/nrclinonc.2017.14128975929
    [Google Scholar]
  31. MayerhoeferM.E. MaterkaA. LangsG. HäggströmI. SzczypińskiP. GibbsP. CookG. Introduction to radiomics.J. Nucl. Med.202061448849510.2967/jnumed.118.22289332060219
    [Google Scholar]
  32. SunH. ChenY. HuangQ. LuiS. HuangX. ShiY. XuX. SweeneyJ.A. GongQ. Psychoradiologic utility of MR imaging for diagnosis of attention deficit hyperactivity disorder: A radiomics analysis.Radiology2018287262063010.1148/radiol.201717022629165048
    [Google Scholar]
  33. AbdollahiH. MahdaviS.R. MofidB. BakhshandehM. RazzaghdoustA. SaadipoorA. TanhaK. Rectal wall MRI radiomics in prostate cancer patients: Prediction of and correlation with early rectal toxicity.Int. J. Radiat. Biol.201894982983710.1080/09553002.2018.149275629969358
    [Google Scholar]
  34. ParkH. LimY. KoE.S. ChoH. LeeJ.E. HanB.K. KoE.Y. ChoiJ.S. ParkK.W. Radiomics signature on magnetic resonance imaging: association with disease-free survival in patients with invasive breast cancer.Clin. Cancer Res.201824194705471410.1158/1078‑0432.CCR‑17‑378329914892
    [Google Scholar]
  35. BaeS. ChoiY.S. AhnS.S. ChangJ.H. KangS.G. KimE.H. KimS.H. LeeS.K. Radiomic MRI phenotyping of glioblastoma: Improving survival prediction.Radiology2018289379780610.1148/radiol.201818020030277442
    [Google Scholar]
  36. FisetS. WelchM.L. WeissJ. PintilieM. ConwayJ.L. MilosevicM. FylesA. TraversoA. JaffrayD. MetserU. XieJ. HanK. Repeatability and reproducibility of MRI-based radiomic features in cervical cancer.Radiother. Oncol.201913510711410.1016/j.radonc.2019.03.00131015155
    [Google Scholar]
  37. KimY. ChoH. KimS.T. ParkH. NamD. KongD.S. Radiomics features to distinguish glioblastoma from primary central nervous system lymphoma on multi-parametric MRI.Neuroradiology201860121297130510.1007/s00234‑018‑2091‑430232517
    [Google Scholar]
  38. BaeS. ChoiY.S. SohnB. AhnS.S. LeeS.K. YangJ. KimJ. Squamous cell carcinoma and lymphoma of the oropharynx: Differentiation using a radiomics approach.Yonsei Med. J.2020611089590010.3349/ymj.2020.61.10.89532975065
    [Google Scholar]
  39. GuoJ. LiuZ. ShenC. LiZ. YanF. TianJ. XianJ. MR-based radiomics signature in differentiating ocular adnexal lymphoma from idiopathic orbital inflammation.Eur. Radiol.20182893872388110.1007/s00330‑018‑5381‑729632999
    [Google Scholar]
  40. HattM. TixierF. PierceL. KinahanP.E. Le RestC.C. VisvikisD. Characterization of PET/CT images using texture analysis: The past, the present… any future?Eur. J. Nucl. Med. Mol. Imaging201744115116510.1007/s00259‑016‑3427‑027271051
    [Google Scholar]
  41. ThibaultG. FertilB. NavarroC. PereiraS. LevyN. SequeiraJ. Texture indexes and gray level size zone matrix application to cell nuclei classification.Pattern Recogn Inf Process2009135140145
    [Google Scholar]
  42. KimJ.Y. ParkJ.E. JoY. ShimW.H. NamS.J. KimJ.H. YooR.E. ChoiS.H. KimH.S. Incorporating diffusion- and perfusion-weighted MRI into a radiomics model improves diagnostic performance for pseudoprogression in glioblastoma patients.Neuro-oncol.201921340441410.1093/neuonc/noy13330107606
    [Google Scholar]
  43. PinkerK. ChinJ. MelsaetherA.N. MorrisE.A. MoyL. Precision medicine and radiogenomics in breast cancer: New approaches toward diagnosis and treatment.Radiology2018287373274710.1148/radiol.201817217129782246
    [Google Scholar]
  44. O’ConnorJ.P.B. RoseC.J. WatertonJ.C. CaranoR.A.D. ParkerG.J.M. JacksonA. Imaging intratumor heterogeneity: Role in therapy response, resistance, and clinical outcome.Clin. Cancer Res.201521224925710.1158/1078‑0432.CCR‑14‑099025421725
    [Google Scholar]
  45. EskeyC.J. KoretskyA.P. DomachM.M. JainR.K. 2H-nuclear magnetic resonance imaging of tumor blood flow: Spatial and temporal heterogeneity in a tissue-isolated mammary adenocarcinoma.Cancer Res.19925221601060191394226
    [Google Scholar]
  46. ZhaoL. GongJ. XiY. XuM. LiC. KangX. YinY. QinW. YinH. ShiM. MRI-based radiomics nomogram may predict the response to induction chemotherapy and survival in locally advanced nasopharyngeal carcinoma.Eur. Radiol.202030153754610.1007/s00330‑019‑06211‑x31372781
    [Google Scholar]
  47. LiuZ. WangS. DongD. WeiJ. FangC. ZhouX. SunK. LiL. LiB. WangM. TianJ. The applications of radiomics in precision diagnosis and treatment of oncology: Opportunities and challenges.Theranostics2019951303132210.7150/thno.3030930867832
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056319914250605053257
Loading
/content/journals/cmir/10.2174/0115734056319914250605053257
Loading

Data & Media loading...

Supplements

Supplementary material is available on the Publisher’s website.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test