Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background

Due to differences in subjective experience and professional level among doctors, as well as inconsistent diagnostic criteria, there are issues with the accuracy and reliability of single imaging diagnosis results for knee joint injuries.

Objective

To address these issues, magnetic resonance imaging (MRI), computed tomography (CT) and ultrasound (US) are adopted in this article for ensemble learning, and deep learning (DL) is combined for automatic analysis.

Methods

By steps such as image enhancement, noise elimination, and tissue segmentation, the quality of image data is improved, and then convolutional neural networks (CNN) are used to automatically identify and classify injury types. The experimental results show that the DL model exhibits high sensitivity and specificity in the diagnosis of different types of injuries, such as anterior cruciate ligament tear, meniscus injury, cartilage injury, and fracture.

Results

The diagnostic accuracy of anterior cruciate ligament tear exceeds 90%, and the highest diagnostic accuracy of cartilage injury reaches 95.80%. In addition, compared with traditional manual image interpretation, the DL model has significant advantages in time efficiency, with a significant reduction in average interpretation time per case. The diagnostic consistency experiment shows that the DL model has high consistency with doctors’ diagnosis results, with an overall error rate of less than 2%.

Conclusion

The model has high accuracy and strong generalization ability when dealing with different types of joint injuries. These data indicate that combining multiple imaging technologies and the DL algorithm can effectively improve the accuracy and efficiency of diagnosing sports injuries of knee joints.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0)
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056360665250506115221
2025-05-15
2025-09-13
Loading full text...

Full text loading...

/deliver/fulltext/cmir/21/1/CMIR-21-E15734056360665.html?itemId=/content/journals/cmir/10.2174/0115734056360665250506115221&mimeType=html&fmt=ahah

References

  1. GuptaS. PawarP.M. TamizharasanP.S. Intelligent detection of knee injury in MRI exam.Int. J. Inf. Technol.20221441815182110.1007/s41870‑022‑00859‑3
    [Google Scholar]
  2. MaheshwariM. YadavP.K. JainS. BathamI.K. GuptaA. SwaikaS. Imaging of knee joint pathologies: A comparative study of ultrasound and magnetic resonance imaging.Journal of Medical Sciences202283222227
    [Google Scholar]
  3. Sanchez-MunozE. HernanzL.B. ZijlJ.A.C. TiricoP.L.E. AngeliniF.J. VerdonkP.C.M. VuylstekeK. AndradeR. Espregueira-MendesJ. ValenteC. FigueroaF. FigueroaD. FernándezM.A. Accuracy of magnetic resonance imaging in the diagnosis of multiple ligament knee injuries: A multicenter study of 178 patients.Am. J. Sports Med.202351242943610.1177/0363546522114569736625432
    [Google Scholar]
  4. NiM. HeM. YangY. WenX. ZhaoY. GaoL. YanR. XuJ. ZhangY. ChenW. JiangC. LiY. ZhaoQ. WuP. LiC. QuJ. YuanH. Application research of AI-assisted compressed sensing technology in MRI scanning of the knee joint: 3D-MRI perspective.Eur. Radiol.20233453046305810.1007/s00330‑023‑10368‑x37932390
    [Google Scholar]
  5. KongA.P. RobbinsR.M. StensbyJ.D. WissmanR.D. The lateral knee radiograph: A detailed review.J. Knee Surg.202235548249010.1055/s‑0041‑174139135062040
    [Google Scholar]
  6. MakaramN.S. MurrayI.R. GeeslinA.G. ChahlaJ. MoatsheG. LaPradeR.F. Diagnosis and treatment strategies of the multiligament injured knee: A scoping review.Br. J. Sports Med.202357954355010.1136/bjsports‑2022‑10642536822842
    [Google Scholar]
  7. DuongV. OoW.M. DingC. CulvenorA.G. HunterD.J. Evaluation and treatment of knee pain: A review.JAMA2023330161568158010.1001/jama.2023.1967537874571
    [Google Scholar]
  8. HelitoP.V.P. HelitoC.P. RodriguesM.B. Anterolateral ligament MRI of the knee in ACL injuries: MRI abnormalities association with instability.Eur. Radiol.20223321456146410.1007/s00330‑022‑09062‑135976397
    [Google Scholar]
  9. RakhraK.S. DelormeJ.P. SandersB. LiewA. The diagnostic accuracy of MRI for evaluating the posterolateral corner in acute knee dislocation.Eur. Radiol.202232106752675810.1007/s00330‑022‑08986‑y35925385
    [Google Scholar]
  10. OchiJ. NozakiT. NimuraA. YamaguchiT. KitamuraN. Subchondral insufficiency fracture of the knee: Review of current concepts and radiological differential diagnoses.Jpn. J. Radiol.202240544345710.1007/s11604‑021‑01224‑334843043
    [Google Scholar]
  11. LuoY. LiangJ. LinS. BaiT. KongL. JinY. ZhangX. LiB. ChenB. The application of deep learning methods in knee joint sports injury diseases.Comput. Methods Biomech. Biomed. Eng. Imaging Vis.20241172689269610.1080/21681163.2023.2261554
    [Google Scholar]
  12. TranA. LassalleL. ZilleP. GuillinR. PluotE. AdamC. CharachonM. BratH. WallaertM. d’AssigniesG. RizkB. Deep learning to detect anterior cruciate ligament tear on knee MRI: Multi-continental external validation.Eur. Radiol.202232128394840310.1007/s00330‑022‑08923‑z35726103
    [Google Scholar]
  13. KimD.H. ChaiJ.W. KangJ.H. LeeJ.H. KimH.J. SeoJ. ChoiJ.W. Ensemble deep learning model for predicting anterior cruciate ligament tear from lateral knee radiograph.Skeletal Radiol.202251122269227910.1007/s00256‑022‑04081‑x35792956
    [Google Scholar]
  14. SantomartinoS.M. KungJ. YiP.H. Systematic review of artificial intelligence development and evaluation for MRI diagnosis of knee ligament or meniscus tears.Skeletal Radiol.202453344545410.1007/s00256‑023‑04416‑237584757
    [Google Scholar]
  15. HousermanD.J. BerendK.R. LombardiA.V.Jr FischettiC.E. DuhaimeE.P. JainA. CrawfordD.A. The viability of an artificial intelligence/machine learning prediction model to determine candidates for knee arthroplasty.J. Arthroplasty202338102075208010.1016/j.arth.2022.04.00335398523
    [Google Scholar]
  16. HinterwimmerF. LazicI. SurenC. HirschmannM.T. PohligF. RueckertD. BurgkartR. Eisenhart-RotheV.R. Machine learning in knee arthroplasty: Specific data are key—a systematic review.Knee Surg. Sports Traumatol. Arthrosc.202230237638810.1007/s00167‑021‑06848‑635006281
    [Google Scholar]
  17. WanJ. LinS. TingM. LinZ. GuoT. Image enhancement algorithm of electrowetting display based on image segmentation and dynamic histogram equalization.Guangzi Xuebao2022512111
    [Google Scholar]
  18. XinW. KunL. CuiC. Histogram equalization algorithm based on sobel gradient and its application on infrared images.Infrared Technology2024464452459
    [Google Scholar]
  19. WuJ. ShiL. YananDu Fast segmentation method of cell image based on dual-gaussian filtering.Jiguang Yu Guangdianzixue Jinzhan202259219
    [Google Scholar]
  20. BinT. WenL. TangR. Single image dehazing algorithm based on Gaussian filtering and guided filtering.Modern Electronics Technique20204312830
    [Google Scholar]
  21. PunnN.S. AgarwalS. Modality specific U-Net variants for biomedical image segmentation: A survey.Artif. Intell. Rev.20225575845588910.1007/s10462‑022‑10152‑135250146
    [Google Scholar]
  22. GhoshS. ChakiA. SantoshK.C. Improved U-Net architecture with VGG-16 for brain tumor segmentation.Phys. Eng. Sci. Med.202144370371210.1007/s13246‑021‑01019‑w34047928
    [Google Scholar]
  23. ZhouX. LiY. LiangW. CNN-RNN based intelligent recommendation for online medical pre-diagnosis support.IEEE/ACM Trans. Comput. Biol. Bioinformatics202118391292110.1109/TCBB.2020.299478032750846
    [Google Scholar]
  24. SinghS.P. WangL. GuptaS. GulyasB. PadmanabhanP. Shallow 3D CNN for detecting acute brain hemorrhage from medical imaging sensors.IEEE Sens. J.20212113142901429910.1109/JSEN.2020.3023471
    [Google Scholar]
  25. ChandriahK.K. NaraganahalliR.V. RNN / LSTM with modified Adam optimizer in deep learning approach for automobile spare parts demand forecasting.Multimedia Tools Appl.20218017261452615910.1007/s11042‑021‑10913‑0
    [Google Scholar]
  26. KumarK.K. An efficient image classification of malaria parasite using convolutional neural network and ADAM optimizer.Turkish J. Comp. Math. Educat.202112233763384
    [Google Scholar]
  27. ZhuangF. QiZ. DuanK. XiD. ZhuY. ZhuH. XiongH. HeQ. A comprehensive survey on transfer learning.Proc. IEEE20211091437610.1109/JPROC.2020.3004555
    [Google Scholar]
  28. NiuS. LiuY. WangJ. SongH. A decade survey of transfer learning (2010–2020).IEEE Trans. Artif. Intell.20201215116610.1109/TAI.2021.3054609
    [Google Scholar]
  29. YangY. LvH. ChenN. A Survey on ensemble learning under the era of deep learning.Artif. Intell. Rev.20235665545558910.1007/s10462‑022‑10283‑5
    [Google Scholar]
  30. SemwalV.B. GuptaA. LalwaniP. An optimized hybrid deep learning model using ensemble learning approach for human walking activities recognition.J. Supercomput.20217711122561227910.1007/s11227‑021‑03768‑7
    [Google Scholar]
  31. ShiZ. WangZ. NingW. YueY. WangZ. A metal artifact reduction method for medical CT images based on adversarial multi-task learning.J. Nanjing Univ.2021573482492
    [Google Scholar]
  32. LiZ. TangH. WeiW. XieM. WuY. Semi-supervised histopathological image segmentation method based on multi-task learning.Med. J. Pek. Uni. Med. Coll. Hosp.2023142416425
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056360665250506115221
Loading
/content/journals/cmir/10.2174/0115734056360665250506115221
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test