Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603
side by side viewer icon HTML

Abstract

Background and Objective

Lung cancer remains a leading cause of cancer-related mortality worldwide, necessitating early and accurate detection methods. Our study aims to enhance lung cancer detection by integrating VGGNet-16 form of Convolutional Neural Networks (CNNs) and Support Vector Machines (SVM) into a hybrid model (SVMVGGNet-16), leveraging the strengths of both models for high accuracy and reliability in classifying lung cancer types in different 4 classes such as adenocarcinoma (ADC), large cell carcinoma (LCC), Normal, and squamous cell carcinoma (SCC).

Methods

Using the LIDC-IDRI dataset, we pre-processed images with a median filter and histogram equalization, segmented lung tumors through thresholding and edge detection, and extracted geometric features such as area, perimeter, eccentricity, compactness, and circularity. VGGNet-16 and SVM employed for feature extraction and classification, respectively. Performance matrices were evaluated using accuracy, AUC, recall, precision, and F1-score. Both VGGNet-16 and SVM underwent comparative analysis during the training, validation, and testing phases.

Results

The SVMVGGNet-16 model outperformed both, with a training accuracy (97.22%), AUC (99.42%), recall (94.22%), precision (95.28%), and F1-score (94.68%). In testing, our SVMVGGNet-16 model maintained high accuracy (96.72%), with an AUC (96.87%), recall (84.67%), precision (87.40%), and F1-score (85.73%).

Conclusion

Our experimental results demonstrate the potential of SVMVGGNet-16 in improving diagnostic performance, leading to earlier detection and better treatment outcomes. Future work includes refining the model, expanding datasets, conducting clinical trials, and integrating the system into clinical practice to ensure practical usability.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056348824241224100809
2025-01-01
2025-09-04
Loading full text...

Full text loading...

/deliver/fulltext/cmir/21/1/CMIR-21-E15734056348824.html?itemId=/content/journals/cmir/10.2174/0115734056348824241224100809&mimeType=html&fmt=ahah

References

  1. BenifaJ.V.B. CholaC. MuaadA.Y. HayatM.A.B. HeyatB.M.B. MehrotraR. AkhtarF. HusseinH.S. VargasD.L.R. CastillaÁ.K. DíezI.T. KhanS. FMDNet: An efficient system for face mask detection based on lightweight model during COVID-19 pandemic in public areas.Sensors20232313609010.3390/s2313609037447939
    [Google Scholar]
  2. UkwuomaC.C. Boosting breast cancer classification from microscopic images using attention mechanism.2022 International Conference on Decision Aid Sciences and Applications, DASAChiangrai, Thailand, 23-25 March, 2022, pp. 258-264.10.1109/DASA54658.2022.9765013
    [Google Scholar]
  3. UkwuomaC.C. Detection of oral cavity squamous cell carcinoma from normal epithelium of the oral cavity using microscopic images.International Conference on Decision Aid Sciences and Applications (DASA)Chiangrai, Thailand, 23-25 March, 2022, pp. 29-36.10.1109/DASA54658.2022.9765023
    [Google Scholar]
  4. MattiuzziC. LippiG. Current cancer epidemiology.J. Epidemiol. Glob. Health20199421722210.2991/jegh.k.191008.00131854162
    [Google Scholar]
  5. AnsariM.M. KumarS. TariqU. HeyatB.B.M. AkhtarF. HayatB.M.A. SayeedE. ParveenS. PomaryD. Evaluating CNN architectures and hyperparameter tuning for enhanced lung cancer detection using transfer learning.J. Electr. Comput. Eng.202420241379061710.1155/2024/3790617
    [Google Scholar]
  6. KalinkeL. ThakrarR. JanesS.M. The promises and challenges of early non-small cell lung cancer detection: Patient perceptions, low-dose CT screening, bronchoscopy and biomarkers.Mol. Oncol.202115102544256410.1002/1878‑0261.1286433252175
    [Google Scholar]
  7. SinghM. ShahC. PatelP. Lung cancer prediction using machine learning models.International Conference on ICT for Sustainable DevelopmentSingapore, Aug 3, 2023, pp. 613-618.10.1007/978‑981‑99‑5652‑4_54
    [Google Scholar]
  8. NooreldeenR. BachH. Current and future development in lung cancer diagnosis.Int. J. Mol. Sci.20212216866110.3390/ijms2216866134445366
    [Google Scholar]
  9. QadriS.F. LinH. ShenL. AhmadM. QadriS. KhanS. KhanM. ZareenS.S. AkbarM.A. HeyatB.M.B. QamarS. CT-Based automatic spine segmentation using patch-based deep learning.Int. J. Intell. Syst.2023202311410.1155/2023/2345835
    [Google Scholar]
  10. NawabiA.K. JinfangS. AbbasiR. IqbalM.S. HeyatM.B.B. AkhtarF. WuK. TwumasiB.A. Segmentation of drug-treated cell image and mitochondrial-oxidative stress using deep convolutional neural network.Oxid. Med. Cell. Longev.2022202211410.1155/2022/564172735663204
    [Google Scholar]
  11. MamunM. MahmudM.I. MeherinM. AbdelgawadA. LCDctCNN: Lung cancer diagnosis of ct scan images using cnn based model.10th International Conference on Signal Processing and Integrated Networks (SPIN)Noida, India, 23-24 March, 2023, pp. 205-212.10.1109/SPIN57001.2023.10116075
    [Google Scholar]
  12. IqbalM.S. HeyatB.B.M. ParveenS. HayatA.B.M. RoshanzamirM. AlizadehsaniR. AkhtarF. SayeedE. HussainS. HusseinH.S. SawanM. Progress and trends in neurological disorders research based on deep learning.Comput. Med. Imaging Graph.202411610240010.1016/j.compmedimag.2024.10240038851079
    [Google Scholar]
  13. SiegelR.L. MillerK.D. WagleN.S. JemalA. Cancer statistics, 2023.CA Cancer J. Clin.2023731174810.3322/caac.2176336633525
    [Google Scholar]
  14. MolinaJ.R. YangP. CassiviS.D. SchildS.E. AdjeiA.A. Non-small cell lung cancer: Epidemiology, risk factors, treatment, and survivorship.Mayo Clin. Proc.200883558459410.4065/83.5.58418452692
    [Google Scholar]
  15. WilliamsE.M. Centers for disease control and prevention.The A-Z Encyclopedia of Food Controversies and the Law20101–26769
    [Google Scholar]
  16. SocietyA.C. Lung cancer statistics | How common is lung cancer.Facts and Figures2020
    [Google Scholar]
  17. M. Res, C. Ruts, C. R. Hospital, M. Sciences, I. E. Committee, and S. Crh-smims, “Prevalence Rtms,”Indian J Med Res201815651752010.4103/ijmr.IJMR
    [Google Scholar]
  18. SeguinL. DurandyM. FeralC.C. Lung adenocarcinoma tumor origin: A guide for personalized medicine.Cancers2022147175910.3390/cancers1407175935406531
    [Google Scholar]
  19. BerezowskaS. MaillardM. KeyterM. BisigB. Pulmonary squamous cell carcinoma and lymphoepithelial carcinoma-morphology, molecular characteristics and differential diagnosis.Histopathology2024841324910.1111/his.1507637936498
    [Google Scholar]
  20. AtiyaS.U. RameshN.V.K. ReddyB.N.K. Classification of non-small cell lung cancers using deep convolutional neural networks.Multimedia Tools Appl.2023835132611329010.1007/s11042‑023‑16119‑w
    [Google Scholar]
  21. QuanyangW. YaoH. SicongW. LinlinQ. ZeweiZ. DonghuiH. HongjiaL. ShijunZ. Artificial intelligence in lung cancer screening: Detection, classification, prediction, and prognosis.Cancer Med.2024137e714010.1002/cam4.714038581113
    [Google Scholar]
  22. AnusewiczD. OrzechowskaM. BednarekA.K. Lung squamous cell carcinoma and lung adenocarcinoma differential gene expression regulation through pathways of Notch, Hedgehog, Wnt, and ErbB signalling.Sci. Rep.20201012112810.1038/s41598‑020‑77284‑833273537
    [Google Scholar]
  23. TanS. L. SelvachandranG. ParamesranR. DingW. Lung cancer detection systems applied to medical images: A state-of-the-art surveyArchives of Computational Methods in Engineering202413810.1007/s11831‑024‑10141‑3
    [Google Scholar]
  24. KumarY. GuptaS. SinglaR. HuY.C. A systematic review of artificial intelligence techniques in cancer prediction and diagnosis.Arch. Comput. Methods Eng.20222942043207010.1007/s11831‑021‑09648‑w34602811
    [Google Scholar]
  25. HunterB. HindochaS. LeeR.W. The role of artificial intelligence in early cancer diagnosis.Cancers2022146152410.3390/cancers1406152435326674
    [Google Scholar]
  26. HeyatM.B.B. AkhtarF. MunirF. SultanaA. MuaadA.Y. GulI. SawanM. AsgharW. IqbalS.M.A. BaigA.A. DíezT.I. WuK. Unravelling the complexities of depression with medical intelligence: Exploring the interplay of genetics, hormones, and brain function.Compl. Int. Syst.20241045883591510.1007/s40747‑024‑01346‑x
    [Google Scholar]
  27. AkhtarF. HeyatB.B.M. SultanaA. ParveenS. ZeeshanM.H. MerlinS.F. ShenB. PomaryD. LiP.J. SawanM. Medical intelligence for anxiety research: Insights from genetics, hormones, implant science, and smart devices with future strategies.Wiley Interdiscip. Rev. Data Min. Knowl. Discov.2024146e155210.1002/widm.1552
    [Google Scholar]
  28. JoshuaN.E.S. BhattacharyyaD. ChakkravarthyM. ByunY.C. 3D CNN with visual insights for early detection of lung cancer using gradient-weighted class activation.J. Healthc. Eng.2021202111110.1155/2021/669551833777347
    [Google Scholar]
  29. PatraR. Prediction of lung cancer using machine learning classifierComputing Science, Communication and Security: First International Conference, COMS2Gujarat, India, March 26–27, 2020, pp. 132-142.10.1007/978‑981‑15‑6648‑6_11
    [Google Scholar]
  30. NazirI. HaqI. AlQahtaniS.A. JadoonM.M. DahshanM. Machine learning-based lung cancer detection using multiview image registration and fusion.J. Sens.202320231668343810.1155/2023/6683438
    [Google Scholar]
  31. WuJ. LiuC. LiuX. SunW. LiL. GaoN. ZhangY. YangX. ZhangJ. WangH. LiuX. HuangX. ZhangY. ChengR. ChiK. MaoL. ZhouL. LinD. LingS. Artificial intelligence-assisted system for precision diagnosis of PD-L1 expression in non-small cell lung cancer.Mod. Pathol.202235340341110.1038/s41379‑021‑00904‑934518630
    [Google Scholar]
  32. WahidR.R. Nisa’C. AmaliyahR.P. PuspaningrumE.Y. Lung and colon cancer detection with convolutional neural networks on histopathological images.AIP Conf. Proc.2023265402002010.1063/5.0114327
    [Google Scholar]
  33. ZeeshanH.M. HeyatM.B.B. HayatM.A.B. ParveenS. SultanaA. AkhtarF. IqbalA. AliA. PomaryD. OgunsakinR.E. AbdelgelielA.S. Progress and research trends in lumpy skin disease based on the scientometric assessment – A review.Ann. Anim. Sci.2024Sep10.2478/aoas‑2024‑0091
    [Google Scholar]
  34. JianW. LiJ.P. HaqA.U. KhanS. AlotaibiR.M. AlajlanS.A. HeyatM.B.B. Feature elimination and stacking framework for accurate heart disease detection in IoT healthcare systems using clinical data.Front. Med.2024114136239710.3389/fmed.2024.136239738841592
    [Google Scholar]
  35. TripathiS. MuhrD. BrunnerM. JodlbauerH. DehmerM. StreibE.F. Ensuring the robustness and reliability of data-driven knowledge discovery models in production and manufacturing.Front. Artif. Int.20214June57689210.3389/frai.2021.57689234195608
    [Google Scholar]
  36. BiW.L. HosnyA. SchabathM.B. GigerM.L. BirkbakN.J. MehrtashA. AllisonT. ArnaoutO. AbboshC. DunnI.F. MakR.H. TamimiR.M. TempanyC.M. SwantonC. HoffmannU. SchwartzL.H. GilliesR.J. HuangR.Y. AertsH.J.W.L. Artificial intelligence in cancer imaging: Clinical challenges and applications.CA Cancer J. Clin.201969212715710.3322/caac.2155230720861
    [Google Scholar]
  37. HuangB. SolleeJ. LuoY.H. ReddyA. ZhongZ. WuJ. MammarappallilJ. HealeyT. ChengG. AzzoliC. KorogodskyD. ZhangP. FengX. LiJ. YangL. JiaoZ. BaiH.X. Prediction of lung malignancy progression and survival with machine learning based on pre-treatment FDG-PET/CT.EBioMedicine20228210412710.1016/j.ebiom.2022.10412735810561
    [Google Scholar]
  38. DavriA. BirbasE. KanavosT. NtritsosG. GiannakeasN. TzallasA.T. BatistatouA. Deep learning for lung cancer diagnosis, prognosis and prediction using histological and cytological images: A systematic review.Cancers20231515398110.3390/cancers1515398137568797
    [Google Scholar]
  39. Silvad.G.L.F. NetoS.O.P. SilvaA.C. Paivad.A.C. GattassM. Lung nodules diagnosis based on evolutionary convolutional neural network.Mult. Tools Appl.20177618190391905510.1007/s11042‑017‑4480‑9
    [Google Scholar]
  40. KaurS. HoodaR. MittalA. Akashdeep SofatS. Deep CNN-based method for segmenting lung fields in digital chest radiographs.Commun. Comput. Inf. Sci.2017712July18519410.1007/978‑981‑10‑5780‑9_17
    [Google Scholar]
  41. NibaliA. HeZ. WollersheimD. Pulmonary nodule classification with deep residual networks.Int. J. CARS201712101799180810.1007/s11548‑017‑1605‑628501942
    [Google Scholar]
  42. ZhangT. ZhaoJ. LuoJ. QiangY. Deep belief network for lung nodules diagnosed in CT imaging.Int. J. Perform. Eng.20171381358137010.23940/ijpe.17.08.p17.13581370
    [Google Scholar]
  43. CauseyJ.L. ZhangJ. MaS. JiangB. QuallsJ.A. PolitteD.G. PriorF. ZhangS. HuangX. Highly accurate model for prediction of lung nodule malignancy with CT scans.Sci. Rep.201881928610.1038/s41598‑018‑27569‑w29915334
    [Google Scholar]
  44. NasrullahN. SangJ. AlamM.S. MateenM. CaiB. HuH. Automated lung nodule detection and classification using deep learning combined with multiple strategies.Sensors20191917372210.3390/s1917372231466261
    [Google Scholar]
  45. ShaffieA. SolimanA. FraiwanL. GhazalM. TaherF. DunlapN. WangB. Berkelv.V. KeyntonR. ElmaghrabyA. BazE.A. A generalized deep learning-based diagnostic system for early diagnosis of various types of pulmonary nodules.Technol. Cancer Res. Treat.201817153303381879880010.1177/153303381879880030244648
    [Google Scholar]
  46. AusawalaithongW. ThirachA. MarukatatS. WilaiprasitpornT. Automatic lung cancer prediction from chest X-ray images using the deep learning approach.11th Biomedical Engineering International Conference (BMEiCON)Chiang Mai, Thailand, 21-24 November, 2018, pp. 1-5.10.1109/BMEiCON.2018.8609997
    [Google Scholar]
  47. BhandaryA. PrabhuG.A. RajinikanthV. ThanarajK.P. SatapathyS.C. RobbinsD.E. ShaskyC. ZhangY-D. TavaresJ.M.R.S. RajaN.S.M. Deep-learning framework to detect lung abnormality – A study with chest X-Ray and lung CT scan images.Pattern Recognit. Lett.202012927127810.1016/j.patrec.2019.11.013
    [Google Scholar]
  48. XieY. ZhangJ. XiaY. FulhamM. ZhangY. Fusing texture, shape and deep model-learned information at decision level for automated classification of lung nodules on chest CT.Inf. Fusion20184210211010.1016/j.inffus.2017.10.005
    [Google Scholar]
  49. Puneet A. Chauhan Detection of lung cancer using machine learning techniques based on routine blood indices.IEEE International Conference for Innovation in Technology (INOCON)Bangluru, India, 06-08 November, 2020, pp. 1-610.1109/INOCON50539.2020.9298407
    [Google Scholar]
  50. RehmanA. KashifM. AbunadiI. AyeshaN. Lung cancer detection and classification from chest CT Scans using machine learning techniques.1st International Conference on Artificial Intelligence and Data Analytics (CAIDA)Riyadh, Saudi Arabia, 06-07 April, 2021, pp. 101-104.10.1109/CAIDA51941.2021.9425269
    [Google Scholar]
  51. LiW. ZhuL. LiK. YeS. WangH. WangY. XueJ. WangC. LiS. LiangN. YangY. Machine learning-assisted dual-marker detection in serum small extracellular vesicles for the diagnosis and prognosis prediction of non-small cell lung cancer.Nanomaterials202212580910.3390/nano1205080935269297
    [Google Scholar]
  52. MohamedT.I.A. OyeladeO.N. EzugwuA.E. Automatic detection and classification of lung cancer CT scans basedondeeplearning and ebola optimization search algorithm.Plos one2023188e028579610.1371/journal.pone.0285796
    [Google Scholar]
  53. LiM. JiangY. ZhangY. ZhuH. Medical image analysis using deep learning algorithms.Front. Public Health202311November127325310.3389/fpubh.2023.127325338026291
    [Google Scholar]
  54. MridhaM.F. ProdeepA.R. HoqueA.S.M.M. IslamM.R. LimaA.A. KabirM.M. HamidM.A. WatanobeY. A comprehensive survey on the progress, process, and challenges of lung cancer detection and classification.J. Healthc. Eng.2022202214310.1155/2022/590523036569180
    [Google Scholar]
  55. PatilA. RaneM. Convolutional neural networks: An overview and its applications in pattern recognition.Smart Innov. Syst. Technol.2021195213010.1007/978‑981‑15‑7078‑0_3
    [Google Scholar]
  56. SheriffT.M.S. KumarV.J. VigneshwaranS. JonesA. AnandJ. Lung cancer detection using VGG NET 16 architecture.J. Phys. Conf. Ser.20212040101200110.1088/1742‑6596/2040/1/012001
    [Google Scholar]
  57. WuH. GuX. Max-pooling dropout for regularization of convolutional neural networks.Lect. Notes Comput. Sci.20159489465410.1007/978‑3‑319‑26532‑2_6
    [Google Scholar]
  58. MaruschakP. KonovalenkoI. OsadtsaY. MedvidV. ShovkunO. BaranD. KozburH. MykhailyshynR. Surface illumination as a factor influencing the efficacy of defect recognition on a rolled metal surface using a deep neural network.Appl. Sci.2024146259110.3390/app14062591
    [Google Scholar]
  59. AshwiniP. Categorizing the stages of lung cancer using multi SVM classifier.Int. J. Res. Pharm. Sci.20121032323232810.26452/ijrps.v10i3.1472
    [Google Scholar]
  60. NigudgiS. BhyriC. Retracted article: Lung cancer CT image classification using hybrid-SVM transfer learning approach.Soft Comput.202327149845985910.1007/s00500‑023‑08498‑x
    [Google Scholar]
  61. AgarwalM. RaniG. KumarA. KP.K. ManikandanR. GandomiA.H. Deep learning for enhanced brain tumor detection and classification.Res. Eng.20242210211710.1016/j.rineng.2024.102117
    [Google Scholar]
  62. FariaN. CampelosS. CarvalhoV. A novel convolutional neural network algorithm for histopathological lung cancer detection.Appl. Sci.20231311657110.3390/app13116571
    [Google Scholar]
  63. AlqahtaniA.F. IlyasM. An ensemble-based multi-classification machine learning classifiers approach to detect multiple classes of cyberbullying.Mach. Learn. Knowl. Extrac.20246115617010.3390/make6010009
    [Google Scholar]
  64. MahmudM.I. MamunM. AbdelgawadA. A deep analysis of brain tumor detection from MR images using deep learning networks.Algorithms202316417610.3390/a16040176
    [Google Scholar]
  65. TahseenZ. SofiG. HeyatB.M.B. JahanN. RashidA. Exploring obstruction and deobstruent drugs in unani medicine: A comprehensive survey and future directionsAltern. Ther. Health Med.20243072027
    [Google Scholar]
  66. SultanaA. BegumW. SaeediR. RahmanK. HeyatB.M.B. AkhtarF. SonN.T. UllahH. Experimental and computational approaches for the classification and correlation of temperament ( Mizaj ) and uterine dystemperament ( Su’-I-Mizaj Al-Rahim ) in abnormal vaginal discharge ( Sayalan Al-Rahim ) based on clinical analysis using support vector machine.Complexity202220221571850110.1155/2022/5718501
    [Google Scholar]
  67. UkwuomaC.C. QinZ. HeyatB.B.M. AkhtarF. BamisileO. MuaadA.Y. AddoD. AntariA.M.A. A hybrid explainable ensemble transformer encoder for pneumonia identification from chest X-ray images.J. Adv. Res.20234819121110.1016/j.jare.2022.08.02136084812
    [Google Scholar]
  68. HumayunM. SujathaR. AlmuayqilS.N. JhanjhiN.Z. A transfer learning approach with a convolutional neural network for the classification of lung carcinoma.Healthcare2022106105810.3390/healthcare1006105835742109
    [Google Scholar]
  69. MusthafaM.M. ManimozhiI. MaheshT.R. GuluwadiS. Optimizing double-layered convolutional neural networks for efficient lung cancer classification through hyperparameter optimization and advanced image pre-processing techniques.BMC Med. Inform. Decis. Mak.202424114210.1186/s12911‑024‑02553‑938802836
    [Google Scholar]
  70. HoY. WookeyS. The real-world-weight cross-entropy loss function: Modeling the costs of mislabeling.IEEE Access202084806481310.1109/ACCESS.2019.2962617
    [Google Scholar]
  71. HuangS. CaiN. PachecoP.P. NarrandesS. WangY. XuW. Applications of support vector machine (SVM) learning in cancer genomics.Canc. Genom. Prot.2018151415110.21873/cgp.2006329275361
    [Google Scholar]
  72. PalR. AdhikariD. HeyatM.B.B. GuragaiB. LipariV. BallesterB.J. DíezD.L.T.I. AbbasZ. LaiD. A novel smart belt for anxiety detection, classification, and reduction using IIoMT on students’ cardiac signal and MSY.Bioengineering202291279310.3390/bioengineering912079336550999
    [Google Scholar]
  73. SunT. WangJ. LiX. LvP. LiuF. LuoY. GaoQ. ZhuH. GuoX. Comparative evaluation of support vector machines for computer aided diagnosis of lung cancer in CT based on a multi-dimensional data set.Comput. Methods Programs Biomed.2013111251952410.1016/j.cmpb.2013.04.01623727300
    [Google Scholar]
  74. XuX. LiJ. ZhuZ. ZhaoL. WangH. SongC. ChenY. ZhaoQ. YangJ. PeiY. A comprehensive review on synergy of multi-modal Data and AI technologies in medical diagnosis.Bioengineering202411321910.3390/bioengineering1103021938534493
    [Google Scholar]
  75. AnsariM.M. KumarS. Analysis of various image processing approaches in detecting and predicting lung cancer.Emerging Trends in IoT and Computing Technologies202351952710.1201/9781003350057‑76
    [Google Scholar]
  76. ChangY.C. ChangC.M. A simple histogram modification scheme for contrast enhancement.IEEE Trans. Consum. Electron.201056273774210.1109/TCE.2010.5505995
    [Google Scholar]
  77. NageswaranS. ArunkumarG. BishtA.K. MewadaS. KumarJ.N.V.R.S. JawarnehM. AsensoE. Lung cancer classification and prediction using machine learning and image processing.BioMed Res. Int.202220221810.1155/2022/175546036046454
    [Google Scholar]
  78. AnjumS. AhmedI. AsifM. AljuaidH. AlturiseF. GhadiY.Y. ElhabobR. Lung cancer classification in histopathology images using multiresolution efficient nets.Comput. Intell. Neurosci.202320231728294410.1155/2023/728294437876944
    [Google Scholar]
  79. ThelayaA.K. GilalN.U. AlzubaidiM. MajeedF. AgusM. SchneiderJ. HousehM. Applications of discriminative and deep learning feature extraction methods for whole slide image analysis: A survey.J. Pathol. Inform.20231410033510.1016/j.jpi.2023.10033537928897
    [Google Scholar]
  80. KhanU.S.M. SaifullahM.K. HussainA. AzamathullaM.H. Comparative analysis of different rainfall prediction models: A case study of Aligarh City, India.Resul. Eng.202422April10209310.1016/j.rineng.2024.102093
    [Google Scholar]
  81. NamdarK. HaiderM.A. KhalvatiF. A modified AUC for training convolutional neural networks: Taking confidence into account.Front. Artif. Int.2021458292810.3389/frai.2021.58292834917933
    [Google Scholar]
  82. WangL. Deep learning techniques to diagnose lung cancer.Cancers20221422556910.3390/cancers1422556936428662
    [Google Scholar]
  83. WangP. FanE. WangP. Comparative analysis of image classification algorithms based on traditional machine learning and deep learning.Pattern Recognit. Lett.2021141616710.1016/j.patrec.2020.07.042
    [Google Scholar]
  84. TariqU. HuZ. TasneemK.T. HeyatB.M.B. IqbalM.S. AzizK. ClusterE-ZSL: A novel cluster-based embeddings for enhanced zero-shot learning in contrastive pre-training cross-model retrievalIEEE Access20241110.1109/ACCESS.2024.3476082
    [Google Scholar]
  85. TeramotoA. TsukamotoT. KiriyamaY. FujitaH. Automated classification of lung cancer types from cytological images using deep convolutional neural networks.BioMed Res. Int.201720171610.1155/2017/406783228884120
    [Google Scholar]
  86. DritsasE. TrigkaM. Lung cancer risk prediction with machine learning models.Big Data Cog. Comp.20226413910.3390/bdcc6040139
    [Google Scholar]
  87. TandonR. AgrawalS. RathoreN.P.S. MishraA.K. JainS.K. A systematic review on deep learning‐based automated cancer diagnosis models.J. Cell. Mol. Med.2024286e1814410.1111/jcmm.1814438426930
    [Google Scholar]
  88. SunY. LiC. JinL. GaoP. ZhaoW. MaW. TanM. WuW. DuanS. ShanY. LiM. Radiomics for lung adenocarcinoma manifesting as pure ground-glass nodules: Invasive prediction.Eur. Radiol.20203073650365910.1007/s00330‑020‑06776‑y32162003
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056348824241224100809
Loading
/content/journals/cmir/10.2174/0115734056348824241224100809
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test