Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background

The neuroanatomical basis of white matter fiber tracts in gait impairments in individuals suffering from Parkinson’s Disease (PD) is unclear.

Methods

Twenty-four individuals living with PD and 29 Healthy Controls (HCs) were included. For each participant, two-shell High Angular Resolution Diffusion Imaging (HARDI) and high-resolution 3D structural images were acquired using the 3T MRI. Diffusion-weighted data preprocessing was performed using the orientation distribution function to trace the main fiber tracts in PD individuals. Clinical characteristics between the two groups were compared, and the correlation between the FA value and behavioral data was analyzed. Quantitative gait and clinical parameters were recorded in PD at ON and OFF states, respectively.

Results

The mean tract-specific FA values of the right Cingulum Cingulate (rCC) were statistically different between the PD group and the HC group ( =0.047). The FA value of 34-58 equidistant nodes in rCC was positively correlated with Mini-Mental State Examination (MMSE) (r=0.527, =0.024), Berg Balance Scale (BBS)-OFF (r=0.480, =0.040), and BBS-ON (r=0.528, =0.024) scores, while it was negatively correlated with the MDS-UPDRS-III-ON score (r=-0.502, =0.030). Regarding the gait analysis, the FA value was significantly correlated with velocity, cadence, and stride time of the pace and rhythm domains in both ‘ON’ and ‘OFF’ states, respectively (<0.05).

Conclusion

This study served as an initial exploration to establish that HARDI sequences could be employed as a robust tool for analyzing microstructural alterations in white matter fiber bundles among PD patients, although the sample size was small. We confirmed microstructural integrity impairment of rCC to be significantly associated with both gait and cognitive deficits in patients with PD. Early detection of microstructural changes in rCC and targeted treatment can help improve behavioral disorders. In the future, we intend to further integrate multimodal data with assessments of patient behavior both prior to and following intervention. We will validate our findings within an independent cohort to monitor disease progression and evaluate the efficacy of therapeutic interventions.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056330364250109072154
2025-01-14
2025-11-01
Loading full text...

Full text loading...

/deliver/fulltext/cmir/21/1/CMIR-21-E15734056330364.html?itemId=/content/journals/cmir/10.2174/0115734056330364250109072154&mimeType=html&fmt=ahah

References

  1. ElbazA. CarcaillonL. KabS. MoisanF. Epidemiology of Parkinson’s disease.Rev. Neurol.20161721142610.1016/j.neurol.2015.09.01226718594
    [Google Scholar]
  2. TolosaE. GarridoA. ScholzS.W. PoeweW. Challenges in the diagnosis of Parkinson’s disease.Lancet Neurol.202120538539710.1016/S1474‑4422(21)00030‑233894193
    [Google Scholar]
  3. LangM. HircheS. PfisterF.M.J. FrohnerJ. AbedinpourK. PichlerD. FietzekU. UmT.T. KulicD. EndoS. A multi-layer gaussian process for motor symptom estimation in people with Parkinson’s disease.IEEE Trans. Biomed. Eng.201966113038304910.1109/TBME.2019.290000230794163
    [Google Scholar]
  4. NóbregaL.R. RoconE. PereiraA.A. AndradeA.O. A novel physical mobility task to assess freezers in Parkinson’s disease.Healthcare2023113409
    [Google Scholar]
  5. BonoraG. ManciniM. CarpinellaI. ChiariL. HorakF.B. FerrarinM. Gait initiation is impaired in subjects with Parkinson’s disease in the OFF state: Evidence from the analysis of the anticipatory postural adjustments through wearable inertial sensors.Gait Posture20175121822110.1016/j.gaitpost.2016.10.01727816900
    [Google Scholar]
  6. WorringhamC.J. WoodJ.M. KerrG.K. SilburnP.A. Predictors of driving assessment outcome in Parkinson’s disease.Mov. Disord.200621223023510.1002/mds.2070916161149
    [Google Scholar]
  7. PimentaM. MoreiraD. NogueiraT. SilvaC. PintoE.B. ValencaG.T. AlmeidaL.R.S. Anxiety independently contributes to severity of freezing of gait in people with Parkinson’s disease.J. Neuropsychiatry Clin. Neurosci.2019311808510.1176/appi.neuropsych.1709017730187821
    [Google Scholar]
  8. LordS. GalnaB. RochesterL. Moving forward on gait measurement: Toward a more refined approach.Mov. Disord.201328111534154310.1002/mds.2554524132841
    [Google Scholar]
  9. WeiX. WangZ. ZhangM. LiM. ChenY.C. LvH. TuoH. YangZ. WangZ. BaF. Brain surface area alterations correlate with gait impairments in Parkinson’s disease.Front. Aging Neurosci.20221480602610.3389/fnagi.2022.80602635153730
    [Google Scholar]
  10. BraakH. GhebremedhinE. RübU. BratzkeH. TrediciD.K. Stages in the development of Parkinson’s disease-related pathology.Cell Tissue Res.2004318112113410.1007/s00441‑004‑0956‑915338272
    [Google Scholar]
  11. BraakH. TrediciD.K. Neuropathological staging of brain pathology in sporadic Parkinson’s disease: Separating the wheat from the chaff.J. Parkinsons Dis.20177s1S71S8510.3233/JPD‑17900128282810
    [Google Scholar]
  12. MichelyJ. VolzL.J. BarbeM.T. HoffstaedterF. ViswanathanS. TimmermannL. EickhoffS.B. FinkG.R. GrefkesC. Dopaminergic modulation of motor network dynamics in Parkinson’s disease.Brain2015138366467810.1093/brain/awu38125567321
    [Google Scholar]
  13. MaitiB. RawsonK.S. TanenbaumA.B. KollerJ.M. SnyderA.Z. CampbellM.C. EarhartG.M. PerlmutterJ.S. Functional connectivity of vermis correlates with future gait impairments in Parkinson’s disease.Mov. Disord.202136112559256810.1002/mds.2868434109682
    [Google Scholar]
  14. JozaS. CamicioliR. MartinW.R.W. WielerM. GeeM. BaF. Pedunculopontine nucleus dysconnectivity correlates with gait impairment in Parkinson’s disease: An exploratory study.Front. Aging Neurosci.20221487469210.3389/fnagi.2022.87469235875799
    [Google Scholar]
  15. SurkontJ. JozaS. CamicioliR. MartinW.R.W. WielerM. BaF. Subcortical microstructural diffusion changes correlate with gait impairment in Parkinson’s disease.Parkinsonism Relat. Disord.20218711111810.1016/j.parkreldis.2021.05.00534020302
    [Google Scholar]
  16. ShineJ.M. MatarE. WardP.B. BolithoS.J. GilatM. PearsonM. NaismithS.L. LewisS.J.G. Exploring the cortical and subcortical functional magnetic resonance imaging changes associated with freezing in Parkinson’s disease.Brain201313641204121510.1093/brain/awt04923485851
    [Google Scholar]
  17. ZarkaliA. McColganP. LeylandL.A. LeesA.J. ReesG. WeilR.S. Fiber-specific white matter reductions in Parkinson hallucinations and visual dysfunction.Neurology20209414e1525e153810.1212/WNL.000000000000901432094242
    [Google Scholar]
  18. YeatmanJ.D. DoughertyR.F. MyallN.J. WandellB.A. FeldmanH.M. Tract profiles of white matter properties: Automating fiber-tract quantification.PLoS One2012711e4979010.1371/journal.pone.004979023166771
    [Google Scholar]
  19. ChanL-L. RumpelH. YapK. LeeE. LooH-V. HoG-L. ChongF.S. YuenY. TanE-K. Case control study of diffusion tensor imaging in Parkinson’s disease.J. Neurol. Neurosurg. Psychiatry200778121383138610.1136/jnnp.2007.12152517615165
    [Google Scholar]
  20. PouponC. ClarkC.A. FrouinV. RégisJ. BlochI. BihanL.D. ManginJ.F. Regularization of diffusion-based direction maps for the tracking of brain white matter fascicles.Neuroimage200012218419510.1006/nimg.2000.060710913324
    [Google Scholar]
  21. Du J. GohA. Qiu A. Diffeomorphic metric mapping of high angular resolution diffusion imaging based on Riemannian structure of orientation distribution functions.IEEE Trans. Med. Imaging20123151021103310.1109/TMI.2011.217825322156979
    [Google Scholar]
  22. TuchD.S. Q-ball imaging.Magn. Reson. Med.20045261358137210.1002/mrm.2027915562495
    [Google Scholar]
  23. MoriS. ZhangJ. Principles of diffusion tensor imaging and its applications to basic neuroscience research.Neuron200651552753910.1016/j.neuron.2006.08.01216950152
    [Google Scholar]
  24. Figueiredod.E.H.M.S.G. BorgonoviA.F.N.G. DoringT.M. Basic concepts of MR imaging, diffusion MR imaging, and diffusion tensor imaging.Magn. Reson. Imaging Clin. N. Am.201119112210.1016/j.mric.2010.10.00521129633
    [Google Scholar]
  25. AcquaD.F. SimmonsA. WilliamsS.C.R. CataniM. Can spherical deconvolution provide more information than fiber orientations? Hindrance modulated orientational anisotropy, a true-tract specific index to characterize white matter diffusion.Hum. Brain Mapp.201334102464248310.1002/hbm.2208022488973
    [Google Scholar]
  26. DengB. ZhangY. WangL. PengK. HanL. NieK. YangH. ZhangL. WangJ. Diffusion tensor imaging reveals white matter changes associated with cognitive status in patients with Parkinson’s disease.Am. J. Alzheimers Dis. Other Demen.201328215416410.1177/153331751247020723271331
    [Google Scholar]
  27. VaillancourtD.E. SprakerM.B. ProdoehlJ. AbrahamI. CorcosD.M. ZhouX.J. ComellaC.L. LittleD.M. High-resolution diffusion tensor imaging in the substantia nigra of de novo Parkinson disease.Neurology200972161378138410.1212/01.wnl.0000340982.01727.6e19129507
    [Google Scholar]
  28. PéranP. CherubiniA. AssognaF. PirasF. QuattrocchiC. PeppeA. CelsisP. RascolO. DémonetJ.F. StefaniA. PierantozziM. PontieriF.E. CaltagironeC. SpallettaG. SabatiniU. Magnetic resonance imaging markers of Parkinson’s disease nigrostriatal signature.Brain2010133113423343310.1093/brain/awq21220736190
    [Google Scholar]
  29. WenM.C. HengH.S.E. HsuJ.L. XuZ. LiewG.M. AuW.L. ChanL.L. TanL.C.S. TanE.K. Structural connectome alterations in prodromal and de novo Parkinson’s disease patients.Parkinsonism Relat. Disord.201745212710.1016/j.parkreldis.2017.09.01928964628
    [Google Scholar]
  30. WangM. JiangS. YuanY. ZhangL. DingJ. WangJ. ZhangJ. ZhangK. WangJ. Alterations of functional and structural connectivity of freezing of gait in Parkinson’s disease.J. Neurol.201626381583159210.1007/s00415‑016‑8174‑427230857
    [Google Scholar]
  31. HermanT. KatzR.K. JacobY. GiladiN. HausdorffJ.M. Gray matter atrophy and freezing of gait in Parkinson’s disease: Is the evidence black-on-white?Mov. Disord.201429113413910.1002/mds.2569724151091
    [Google Scholar]
  32. TuchD.S. ReeseT.G. WiegellM.R. MakrisN. BelliveauJ.W. WedeenV.J. High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity.Magn. Reson. Med.200248457758210.1002/mrm.1026812353272
    [Google Scholar]
  33. CousineauM. JodoinP.M. GaryfallidisE. CôtéM-A. MorencyF.C. RozanskiV. Grand’MaisonM. BedellB.J. DescoteauxM. A test-retest study on Parkinson’s PPMI dataset yields statistically significant white matter fascicles.Neuroimage Clin.20171622223310.1016/j.nicl.2017.07.02028794981
    [Google Scholar]
  34. TournierJ.D. CalamanteF. GadianD.G. ConnellyA. Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution.Neuroimage20042331176118510.1016/j.neuroimage.2004.07.03715528117
    [Google Scholar]
  35. JeurissenB. LeemansA. JonesD.K. TournierJ.D. SijbersJ. Probabilistic fiber tracking using the residual bootstrap with constrained spherical deconvolution.Hum. Brain Mapp.201132346147910.1002/hbm.2103221319270
    [Google Scholar]
  36. HughesA.J. DanielS.E. ShlomoB.Y. LeesA.J. The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service.Brain2002125486187010.1093/brain/awf08011912118
    [Google Scholar]
  37. YanY. WangZ. WeiW. YangZ. GuoL. WangZ. WeiX. Correlation of brain iron deposition and freezing of gait in Parkinson’s disease: A cross-sectional study.Quant. Imaging Med. Surg.202313127961797210.21037/qims‑23‑26738106290
    [Google Scholar]
  38. WeiX. WangS. ZhangM. YanY. WangZ. WeiW. TuoH. WangZ. Gait impairment-related axonal degeneration in Parkinson’s disease by neurite orientation dispersion and density imaging.NPJ Parkinsons Dis.20241014510.1038/s41531‑024‑00654‑w38413647
    [Google Scholar]
  39. JenkinsonM. BeckmannC.F. BehrensT.E.J. WoolrichM.W. SmithS.M. Fsl.Neuroimage201262278279010.1016/j.neuroimage.2011.09.01521979382
    [Google Scholar]
  40. LambM.R. The two sides of perception.Trends Cogn. Sci.19982520020110.1016/S1364‑6613(98)01165‑621227156
    [Google Scholar]
  41. AronA.R. PoldrackR.A. Cortical and subcortical contributions to stop signal response inhibition: Role of the subthalamic nucleus.J. Neurosci.20062692424243310.1523/JNEUROSCI.4682‑05.200616510720
    [Google Scholar]
  42. KimS.M. KimD.H. YangY. HaS.W. HanJ.H. Gait patterns in Parkinson’s disease with or without cognitive impairment.Dement. Neurocognitive Disord.2018172576510.12779/dnd.2018.17.2.5730906393
    [Google Scholar]
  43. HarringtonD.L. ShenQ. WeiX. LitvanI. HuangM. LeeR.R. Functional topologies of spatial cognition predict cognitive and motor progression in Parkinson’s.Front. Aging Neurosci.20221498722510.3389/fnagi.2022.98722536299614
    [Google Scholar]
  44. BissettPG LoganGD Wouwev.NC TollesonCM PhibbsFT ClaassenDO Generalized motor inhibitory deficit in Parkinson’s disease patients who freeze.J. Neural Trans.20151221693170110.1007/s00702‑015‑1454‑9
    [Google Scholar]
  45. SnijdersA.H. LeunissenI. BakkerM. OvereemS. HelmichR.C. BloemB.R. ToniI. Gait-related cerebral alterations in patients with Parkinson’s disease with freezing of gait.Brain20111341597210.1093/brain/awq32421126990
    [Google Scholar]
  46. TessitoreA. AmboniM. EspositoF. RussoA. PicilloM. MarcuccioL. PellecchiaM.T. VitaleC. CirilloM. TedeschiG. BaroneP. Resting-state brain connectivity in patients with Parkinson’s disease and freezing of gait.Parkinsonism Relat. Disord.201218678178710.1016/j.parkreldis.2012.03.01822510204
    [Google Scholar]
  47. FlingB.W. CohenR.G. ManciniM. NuttJ.G. FairD.A. HorakF.B. Asymmetric pedunculopontine network connectivity in parkinsonian patients with freezing of gait.Brain201313682405241810.1093/brain/awt17223824487
    [Google Scholar]
  48. VogtB.A. Cingulate cortex in the three limbic subsystems.Handb. Clin. Neurol.2019166395110.1016/B978‑0‑444‑64196‑0.00003‑031731924
    [Google Scholar]
  49. PrangeS. MetereauE. MailletA. LhomméeE. KlingerH. PelissierP. IbarrolaD. HeckemannR.A. CastriotoA. TremblayL. SgambatoV. BroussolleE. KrackP. ThoboisS. Early limbic microstructural alterations in apathy and depression in de novo Parkinson’s disease.Mov. Disord.201934111644165410.1002/mds.2779331309609
    [Google Scholar]
  50. TalwarP. KushwahaS. ChaturvediM. MahajanV. Systematic review of different neuroimaging correlates in mild cognitive impairment and Alzheimer’s disease.Clin. Neuroradiol.202131495396710.1007/s00062‑021‑01057‑734297137
    [Google Scholar]
  51. DrobyA. PelosinE. PutzoluM. BommaritoG. MarcheseR. MazzellaL. AvanzinoL. IngleseM. A multimodal imaging approach demonstrates reduced midbrain functional network connectivity is associated with freezing of gait in Parkinson’s disease.Front. Neurol.20211258359310.3389/fneur.2021.58359333995237
    [Google Scholar]
  52. SveinbjornsdottirS. The clinical symptoms of Parkinson’s disease.J. Neurochem.2016139S131832410.1111/jnc.1369127401947
    [Google Scholar]
  53. VogtB.A. Cingulate cortex in Parkinson’s disease.Handb. Clin. Neurol.201916625326610.1016/B978‑0‑444‑64196‑0.00013‑331731914
    [Google Scholar]
  54. RollsE.T. The cingulate cortex and limbic systems for emotion, action, and memory.Brain Struct. Funct.201922493001301810.1007/s00429‑019‑01945‑231451898
    [Google Scholar]
  55. JhaA. LitvakV. TauluS. ThevathasanW. HyamJ.A. FoltynieT. LimousinP. BogdanovicM. ZrinzoL. GreenA.L. AzizT.Z. FristonK. BrownP. Functional connectivity of the pedunculopontine nucleus and surrounding region in Parkinson’s disease.Cereb. Cortex2017271546710.1093/cercor/bhw34028316456
    [Google Scholar]
  56. AlmeidaQ.J. LeboldC.A. Freezing of gait in Parkinson’s disease: A perceptual cause for a motor impairment?J. Neurol. Neurosurg. Psychiatry201081551351810.1136/jnnp.2008.16058019758982
    [Google Scholar]
  57. IsekiK. HanakawaT. ShinozakiJ. NankakuM. FukuyamaH. Neural mechanisms involved in mental imagery and observation of gait.Neuroimage20084131021103110.1016/j.neuroimage.2008.03.01018450480
    [Google Scholar]
  58. WennbergA.M.V. SavicaR. HagenC.E. RobertsR.O. KnopmanD.S. HollmanJ.H. VemuriP. JackC.R.Jr PetersenR.C. MielkeM.M. Cerebral amyloid deposition is associated with gait parameters in the mayo clinic study of aging.J. Am. Geriatr. Soc.201765479279910.1111/jgs.1467027869301
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056330364250109072154
Loading
/content/journals/cmir/10.2174/0115734056330364250109072154
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test