Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Purpose

This study aims to develop an accurate image registration framework for personalized respiratory motion modeling.

Methods

The proposed framework incorporates longitudinal data through a two-stage transfer learning approach. In the first stage, transfer learning is employed on longitudinal data collected from the same device. In the second stage, a personalized model is constructed using the transfer learning approach, reusing the model from the first stage. A novel cross-error function is introduced to guide the customized adaptation stage.

Results

The experiments demonstrate the effectiveness of the proposed framework in respiratory motion modeling. Integrating longitudinal data allows for improved accuracy for personalized respiratory motion modeling.

Conclusion

The study presents a novel approach that incorporates longitudinal data into a two-stage transfer learning process for personalized respiratory motion modeling. The framework demonstrates improved accuracy. The results highlight the potential of leveraging longitudinal data to provide personalized image registration solutions.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056325170250114210309
2025-01-21
2025-11-01
Loading full text...

Full text loading...

/deliver/fulltext/cmir/21/1/CMIR-21-E15734056325170.html?itemId=/content/journals/cmir/10.2174/0115734056325170250114210309&mimeType=html&fmt=ahah

References

  1. SchweikardA. GlosserG. BodduluriM. MurphyM.J. AdlerJ.R. Robotic motion compensation for respiratory movement during radiosurgery.Comput. Aided Surg.20005426327710.3109/1092908000914889411029159
    [Google Scholar]
  2. RomagueraL.V. MezheritskyT. KadouryS. Personalized respiratory motion model using conditional generative networks for mr-guided radiotherapy.Available from: https://api.semanticscholar.org/CorpusID:237621025 2021
  3. FayadH. PanT. PradierO. VisvikisD. Patient specific respiratory motion modeling using a 3D patient’s external surface.Med. Phys.2012396Part13386339510.1118/1.471857822755719
    [Google Scholar]
  4. FassiA. SeregniM. RiboldiM. CerveriP. SarrutD. IvaldiG.B. Fatisd.P.T. LiottaM. BaroniG. Surrogate-driven deformable motion model for organ motion tracking in particle radiation therapy.Phys. Med. Biol.20156041565158210.1088/0031‑9155/60/4/156525615399
    [Google Scholar]
  5. WangT. HeT. ZhangZ. ChenQ. ZhangL. XiaG. YangL. WangH. WongS.T.C. LiH. A personalized image-guided intervention system for peripheral lung cancer on patient-specific respiratory motion model.Int. J. CARS202217101751176410.1007/s11548‑022‑02676‑235639202
    [Google Scholar]
  6. McClellandJ.R. HawkesD.J. SchaeffterT. KingA.P. Respiratory motion models: A review.Med. Image Anal.2013171194210.1016/j.media.2012.09.00523123330
    [Google Scholar]
  7. ShenD. DavatzikosC. Hammer: Hierarchical attribute matching mechanism for elastic registration.Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA 2001)09-10 DecemberKauai, HI, USA2001293610.1109/MMBIA.2001.991696
    [Google Scholar]
  8. AvantsB. EpsteinC. GrossmanM. GeeJ. Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain.Med. Image Anal.2008121264110.1016/j.media.2007.06.00417659998
    [Google Scholar]
  9. KleinS. StaringM. MurphyK. ViergeverM.A. PluimJ. Elastix: A toolbox for intensity-based medical image registration.IEEE Trans. Med. Imaging201029119620510.1109/TMI.2009.203561619923044
    [Google Scholar]
  10. BalakrishnanG. ZhaoA. SabuncuM.R. GuttagJ. DalcaA.V. Voxel- morph: A learning framework for deformable medical image registration.IEEE Trans. Med. Imaging20193881788180010.1109/TMI.2019.2897538
    [Google Scholar]
  11. BalikS. WeissE. JanN. RomanN. SleemanW.C. FatygaM. ChristensenG.E. ZhangC. MurphyM.J. LuJ. KeallP. WilliamsonJ.F. HugoG.D. Evaluation of 4-dimensional computed tomography to 4-dimensional cone-beam computed tomography deformable image registration for lung cancer adaptive radiation therapy.Int. J. Radiat. Oncol. Biol. Phys.201386237237910.1016/j.ijrobp.2012.12.02323462422
    [Google Scholar]
  12. ClarkK. VendtB. SmithK. FreymannJ. KirbyJ. KoppelP. MooreS. PhillipsS. MaffittD. PringleM. TarboxL. PriorF. The cancer imaging archive (TCIA): Maintaining and operating a public information repository.J. Digit. Imaging20132661045105710.1007/s10278‑013‑9622‑723884657
    [Google Scholar]
  13. HugoG.D. WeissE. SleemanW.C. BalikS. KeallP.J. LuJ. WilliamsonJ.F. A longitudinal four‐dimensional computed tomography and cone beam computed tomography dataset for image‐guided radiation therapy research in lung cancer.Med. Phys.201744276277110.1002/mp.1205927991677
    [Google Scholar]
  14. ChenP. GuoY. WangD. ChenC. Dlung: Unsupervised few-shot diffeomorphic respiratory motion modeling.J. Shanghai Jiaotong Univ.20232853654536406811
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056325170250114210309
Loading
/content/journals/cmir/10.2174/0115734056325170250114210309
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test