Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Aims

To develop and evaluate machine learning models using tumor and nodal radiomics features for predicting the response to neoadjuvant chemotherapy (NAC) and recurrence risk in locally advanced gastric cancer (LAGC).

Background

Early and accurate response prediction is vital to stratify LAGC patients and select proper candidates for NAC.

Objective

A total of 218 patients with LAGC undergoing NAC followed by gastrectomy were enrolled in our study and were randomly divided into a training cohort (n = 153) and a validation cohort (n = 65).

Methods

We extracted 1316 radiomics features from the volume of interest of the primary lesion and maximal lymph node on venous phase CT images. We built 3 radiomics signatures for distinguishing good responders and poor responders based on tumor radiomics (TR), nodal radiomics (NR), and a combination of the two (TNR), respectively. A nomogram was then developed by integrating the radiomics signature and clinical factors. Kaplan-Meier survival curves were used to evaluate the prognostic value of the nomogram.

Results

The TNR signature achieved improved predictive value, with AUCs of 0.755 and 0.744 in the training and validation cohorts. Our proposed nomogram model (TNRN) showed a good performance for GR prediction in the prediction efficacy, calibration ability, and clinical benefit, with AUCs of 0.779 and 0.732 in the training and validation cohorts, superior to the clinical model. Moreover, the TNRN could accurately classify the patients into high-risk and low-risk groups in both training and validation cohorts with regard to postoperative recurrence and metastasis.

Conclusion

The TNRN performed well in identifying good responders and provided valuable information for predicting progression-free survival time (PFS) in patients with LAGC who underwent NAC.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056299880240514111901
2024-01-01
2025-09-08
Loading full text...

Full text loading...

/deliver/fulltext/cmir/20/1/CMIR-20-E15734056299880.html?itemId=/content/journals/cmir/10.2174/0115734056299880240514111901&mimeType=html&fmt=ahah

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  2. Van CutsemE. SagaertX. TopalB. HaustermansK. PrenenH. Gastric cancer.Lancet2016388100602654266410.1016/S0140‑6736(16)30354‑327156933
    [Google Scholar]
  3. Al-BatranS.E. HomannN. PauligkC. GoetzeT.O. MeilerJ. KasperS. KoppH.G. MayerF. HaagG.M. LuleyK. LindigU. SchmiegelW. PohlM. StoehlmacherJ. FolprechtG. ProbstS. PrasnikarN. FischbachW. MahlbergR. TrojanJ. KoenigsmannM. MartensU.M. Thuss-PatienceP. EggerM. BlockA. HeinemannV. IllerhausG. MoehlerM. SchenkM. KullmannF. BehringerD.M. HeikeM. PinkD. TeschendorfC. LöhrC. BernhardH. SchuchG. RethwischV. von WeikersthalL.F. HartmannJ.T. KnebaM. DaumS. SchulmannK. WenigerJ. BelleS. GaiserT. OduncuF.S. GüntnerM. HozaeelW. ReichartA. JägerE. KrausT. MönigS. BechsteinW.O. SchulerM. SchmalenbergH. HofheinzR.D. FLOT4-AIO Investigators Perioperative chemotherapy with fluorouracil plus leucovorin, oxaliplatin, and docetaxel versus fluorouracil or capecitabine plus cisplatin and epirubicin for locally advanced, resectable gastric or gastro-oesophageal junction adenocarcinoma (FLOT4): A randomised, phase 2/3 trial.Lancet2019393101841948195710.1016/S0140‑6736(18)32557‑130982686
    [Google Scholar]
  4. GaoX. ZhangY. YuanF. DingB. MaQ. YangW. YanJ. DuL. WangB. YanF. SedlmairM. PanZ. ZhangH. Locally advanced gastric cancer: Total iodine uptake to predict the response of primary lesion to neoadjuvant chemotherapy.J. Cancer Res. Clin. Oncol.2018144112207221810.1007/s00432‑018‑2728‑z30094537
    [Google Scholar]
  5. TangL. LiZ.Y. LiZ.W. ZhangX.P. LiY.L. LiX.T. WangZ.L. JiJ.F. SunY.S. Evaluating the response of gastric carcinomas to neoadjuvant chemotherapy using iodine concentration on spectral CT: A comparison with pathological regression.Clin. Radiol.201570111198120410.1016/j.crad.2015.06.08326188843
    [Google Scholar]
  6. FuJ. TangL. LiZ.Y. LiX.T. ZhuH.F. SunY.S. JiJ.F. Diffusion kurtosis imaging in the prediction of poor responses of locally advanced gastric cancer to neoadjuvant chemotherapy.Eur. J. Radiol.202012810897410.1016/j.ejrad.2020.10897432416553
    [Google Scholar]
  7. SchneiderP.M. EshmuminovD. RordorfT. VetterD. Veit-HaibachP. WeberA. BauerfeindP. SamarasP. LehmannK. 18FDG-PET-CT identifies histopathological non-responders after neoadjuvant chemotherapy in locally advanced gastric and cardia cancer: cohort study.BMC Cancer201818154810.1186/s12885‑018‑4477‑429743108
    [Google Scholar]
  8. LambinP. LeijenaarR.T.H. DeistT.M. PeerlingsJ. de JongE.E.C. van TimmerenJ. SanduleanuS. LarueR.T.H.M. EvenA.J.G. JochemsA. van WijkY. WoodruffH. van SoestJ. LustbergT. RoelofsE. van ElmptW. DekkerA. MottaghyF.M. WildbergerJ.E. WalshS. Radiomics: The bridge between medical imaging and personalized medicine.Nat. Rev. Clin. Oncol.2017141274976210.1038/nrclinonc.2017.14128975929
    [Google Scholar]
  9. MaZ. FangM. HuangY. HeL. ChenX. LiangC. HuangX. ChengZ. DongD. LiangC. XieJ. TianJ. LiuZ. CT-based radiomics signature for differentiating Borrmann type IV gastric cancer from primary gastric lymphoma.Eur. J. Radiol.20179114214710.1016/j.ejrad.2017.04.00728629560
    [Google Scholar]
  10. GigantiF. AntunesS. SalernoA. AmbrosiA. MarraP. NicolettiR. OrsenigoE. ChiariD. AlbarelloL. StaudacherC. EspositoA. Del MaschioA. De CobelliF. Gastric cancer: Texture analysis from multidetector computed tomography as a potential preoperative prognostic biomarker.Eur. Radiol.20172751831183910.1007/s00330‑016‑4540‑y27553932
    [Google Scholar]
  11. JiangY. ChenC. XieJ. WangW. ZhaX. LvW. ChenH. HuY. LiT. YuJ. ZhouZ. XuY. LiG. Radiomics signature of computed tomography imaging for prediction of survival and chemotherapeutic benefits in gastric cancer.EBioMedicine20183617118210.1016/j.ebiom.2018.09.00730224313
    [Google Scholar]
  12. LiuS. HeJ. LiuS. JiC. GuanW. ChenL. GuanY. YangX. ZhouZ. Radiomics analysis using contrast-enhanced CT for preoperative prediction of occult peritoneal metastasis in advanced gastric cancer.Eur. Radiol.202030123924610.1007/s00330‑019‑06368‑531385045
    [Google Scholar]
  13. WangY. LiuW. YuY. LiuJ. XueH. QiY. LeiJ. YuJ. JinZ. CT radiomics nomogram for the preoperative prediction of lymph node metastasis in gastric cancer.Eur. Radiol.202030297698610.1007/s00330‑019‑06398‑z31468157
    [Google Scholar]
  14. ChenY. WeiK. LiuD. XiangJ. WangG. MengX. PengJ. A machine learning model for predicting a major response to neoadjuvant chemotherapy in advanced gastric cancer.Front. Oncol.20211167545810.3389/fonc.2021.67545834141620
    [Google Scholar]
  15. XieK. CuiY. ZhangD. HeW. HeY. GaoD. ZhangZ. DongX. YangG. DaiY. LiZ. Pretreatment contrast-enhanced computed tomography radiomics for prediction of pathological regression following neoadjuvant chemotherapy in locally advanced gastric cancer: A preliminary multicenter study.Front. Oncol.20221177075810.3389/fonc.2021.77075835070974
    [Google Scholar]
  16. LiZ. ZhangD. DaiY. DongJ. WuL. LiY. ChengZ. DingY. LiuZ. Computed tomography-based radiomics for prediction of neoadjuvant chemotherapy outcomes in locally advanced gastric cancer: A pilot study.Chin. J. Cancer Res.201830440641410.21147/j.issn.1000‑9604.2018.04.0330210220
    [Google Scholar]
  17. SunK.Y. HuH.T. ChenS.L. YeJ.N. LiG.H. ChenL.D. PengJ.J. FengS.T. YuanY.J. HouX. WuH. LiX. WuT.F. WangW. XuJ.B. CT-based radiomics scores predict response to neoadjuvant chemotherapy and survival in patients with gastric cancer.BMC Cancer202020146810.1186/s12885‑020‑06970‑732450841
    [Google Scholar]
  18. WangW. PengY. FengX. ZhaoY. SeeruttunS.R. ZhangJ. ChengZ. LiY. LiuZ. ZhouZ. Development and validation of a computed tomography–based radiomics signature to predict response to neoadjuvant chemotherapy for locally advanced gastric cancer.JAMA Netw. Open202148e212114310.1001/jamanetworkopen.2021.2114334410397
    [Google Scholar]
  19. AminM.B. GreeneF.L. EdgeS.B. The eighth edition AJCC cancer staging manual: Continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging.CA Cancer J Clin20176729399
    [Google Scholar]
  20. AjaniJ.A. D’AmicoT.A. BentremD.J. ChaoJ. CookeD. CorveraC. DasP. EnzingerP.C. EnzlerT. FantaP. FarjahF. GerdesH. GibsonM.K. HochwaldS. HofstetterW.L. IlsonD.H. KeswaniR.N. KimS. KleinbergL.R. KlempnerS.J. LacyJ. LyQ.P. MatkowskyjK.A. McNamaraM. MulcahyM.F. OutlawD. ParkH. PerryK.A. PimientoJ. PoultsidesG.A. ReznikS. RosesR.E. StrongV.E. SuS. WangH.L. WiesnerG. WillettC.G. YakoubD. YoonH. McMillianN. PluchinoL.A. Gastric cancer, version 2.2022, NCCN clinical practice guidelines in oncology.J. Natl. Compr. Canc. Netw.202220216719210.6004/jnccn.2022.000835130500
    [Google Scholar]
  21. TanX. YangX. HuS. GeY. WuQ. WangJ. SunZ. Prediction of response to neoadjuvant chemotherapy in advanced gastric cancer: A radiomics nomogram analysis based on CT images and clinicopathological features.J. XRay Sci. Technol.2023311496110.3233/XST‑22129136314190
    [Google Scholar]
  22. SongR. CuiY. RenJ. ZhangJ. YangZ. LiD. LiZ. YangX. CT-based radiomics analysis in the prediction of response to neoadjuvant chemotherapy in locally advanced gastric cancer: A dual-center study.Radiother. Oncol.202217115516310.1016/j.radonc.2022.04.02335490846
    [Google Scholar]
  23. XuQ. SunZ. LiX. YeC. ZhouC. ZhangL. LuG. Advanced gastric cancer: CT radiomics prediction and early detection of downstaging with neoadjuvant chemotherapy.Eur. Radiol.202131118765877410.1007/s00330‑021‑07962‑233909133
    [Google Scholar]
  24. MazzeiM.A. GiacomoL.D. BagnacciG. NardoneV. GentiliF. LuciiG. TiniP. MarrelliD. MorgagniP. MuraG. BaiocchiG.L. PittianiF. VolterraniL. RovielloF. Delta-radiomics and response to neoadjuvant treatment in locally advanced gastric cancer—a multicenter study of GIRCG (Italian Research Group for Gastric Cancer).Quant. Imaging Med. Surg.20211162376238710.21037/qims‑20‑68334079708
    [Google Scholar]
  25. WangL. ChenY. TanJ. Efficacy and prognostic value of delta radiomics on dual-energy computed tomography for gastric cancer with neoadjuvant chemotherapy: A preliminary study.Acta Radiol.202210.1177/0284185122112397136062762
    [Google Scholar]
  26. CuiY. ZhangJ. LiZ. WeiK. LeiY. RenJ. WuL. ShiZ. MengX. YangX. GaoX. A CT-based deep learning radiomics nomogram for predicting the response to neoadjuvant chemotherapy in patients with locally advanced gastric cancer: A multicenter cohort study.EClinicalMedicine20224610134810.1016/j.eclinm.2022.10134835340629
    [Google Scholar]
  27. ChenY. XuW. LiY.L. LiuW. SahB.K. WangL. XuZ. WelsM. ZhengY. YanM. ZhangH. MaQ. ZhuZ. LiC. CT-based radiomics showing generalization to predict tumor regression grade for advanced gastric cancer treated with neoadjuvant chemotherapy.Front. Oncol.20221275886310.3389/fonc.2022.75886335280802
    [Google Scholar]
  28. AoyamaT. NishikawaK. FujitaniK. TanabeK. ItoS. MatsuiT. MikiA. NemotoH. SakamakiK. FukunagaT. KimuraY. HirabayashiN. YoshikawaT. Early results of a randomized two-by-two factorial phase II trial comparing neoadjuvant chemotherapy with two and four courses of cisplatin/S-1 and docetaxel/cisplatin/S-1 as neoadjuvant chemotherapy for locally advanced gastric cancer.Ann. Oncol.20172881876188110.1093/annonc/mdx23628486692
    [Google Scholar]
  29. ChenY. YuanF. WangL. LiE. XuZ. WelsM. YaoW. ZhangH. Evaluation of dual-energy CT derived radiomics signatures in predicting outcomes in patients with advanced gastric cancer after neoadjuvant chemotherapy.Eur. J. Surg. Oncol.202248233934710.1016/j.ejso.2021.07.01434304951
    [Google Scholar]
  30. MoonsK.G.M. AltmanD.G. ReitsmaJ.B. IoannidisJ.P.A. MacaskillP. SteyerbergE.W. VickersA.J. RansohoffD.F. CollinsG.S. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): Explanation and elaboration.Ann. Intern. Med.20151621W1W7310.7326/M14‑069825560730
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056299880240514111901
Loading
/content/journals/cmir/10.2174/0115734056299880240514111901
Loading

Data & Media loading...

Supplements

Supplementary material is available on the Publisher’s website.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test