Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Purpose

To explore the potential of diffusion kurtosis imaging (DKI) for assessing the degree of liver injury in a paracetamol-induced rat model and to simultaneously investigate the effect of intravenous gadoxetate on DKI parameters.

Methods

Paracetamol was used to induce hepatoxicity in 39 rats. The rats were pathologically classified into 3 groups: normal (n=11), mild necrosis (n=18), and moderate necrosis (n=10). DKI was performed before and, 15 min, 25 min, and 45 min after gadoxetate administration. Repeated-measures ANOVA with Tukey’s multiple comparison test was used to investigate the effect of gadoxetate on mean diffusivity (MD) and mean diffusion kurtosis (MK) and to assess the differences in MD and MK among the three groups. A receiver operating characteristic (ROC) curve analysis was performed to evaluate the diagnostic accuracy of the MD values when discriminating between the necrotic groups.

Results

Gadoxetate had no significant effect on either the MD or the MK, and the effect size was small. The MD in the moderate necrosis group was significantly lower than that in the other two groups ( = 13.502, <0.001; = 0.428 [95% CI: 0.082-0.637]), while the MK did not significantly differ among the three groups ( = 2.702, = 0.081; = 0.131 [95% CI: 0.001-0.4003]). The AUCs of MD for discriminating the moderate necrosis or normal group from the other groups were 0.921 (95% CI: 0.832-1.000) and 0.831 (95% CI: 0.701-0.961), respectively.

Conclusion

It would be better to measure the MD and MK before gadoxetate injection. MD showed potential for assessing the degree of liver necrosis in a paracetamol-induced liver injury rat model.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056292975240602135201
2024-01-01
2025-09-09
Loading full text...

Full text loading...

/deliver/fulltext/cmir/20/1/CMIR-20-E15734056292975.html?itemId=/content/journals/cmir/10.2174/0115734056292975240602135201&mimeType=html&fmt=ahah

References

  1. WeaverR.J. BlommeE.A. ChadwickA.E. CoppleI.M. GeretsH.H.J. GoldringC.E. GuillouzoA. HewittP.G. Ingelman-SundbergM. JensenK.G. JuhilaS. KlingmüllerU. LabbeG. LiguoriM.J. LovattC.A. MorganP. NaisbittD.J. PietersR.H.H. SnoeysJ. van de WaterB. WilliamsD.P. ParkB.K. Managing the challenge of drug-induced liver injury: A roadmap for the development and deployment of preclinical predictive models.Nat. Rev. Drug Discov.202019213114810.1038/s41573‑019‑0048‑x31748707
    [Google Scholar]
  2. ChalasaniN.P. MaddurH. RussoM.W. WongR.J. ReddyK.R. Practice Parameters Committee of the American College of Gastroenterology ACG clinical guideline: Diagnosis and management of idiosyncratic drug-induced liver injury.Am. J. Gastroenterol.2021116587889810.14309/ajg.000000000000125933929376
    [Google Scholar]
  3. RamachandranA. JaeschkeH. Acetaminophen hepatotoxicity.Semin. Liver Dis.201939222123410.1055/s‑0039‑167991930849782
    [Google Scholar]
  4. YoonE. BabarA. ChoudharyM. KutnerM. PyrsopoulosN. Acetaminophen-induced hepatotoxicity: A comprehensive update.J. Clin. Transl. Hepatol.20164213114227350943
    [Google Scholar]
  5. NeubergerJ. PatelJ. CaldwellH. DaviesS. HebditchV. HollywoodC. HubscherS. KarkhanisS. LesterW. RoslundN. WestR. WyattJ.I. HeydtmannM. Guidelines on the use of liver biopsy in clinical practice from the British Society of Gastroenterology, the Royal College of Radiologists and the Royal College of Pathology.Gut20206981382140310.1136/gutjnl‑2020‑32129932467090
    [Google Scholar]
  6. RosenkrantzA.B. PadhaniA.R. ChenevertT.L. KohD.M. De KeyzerF. TaouliB. Le BihanD. Body diffusion kurtosis imaging: Basic principles, applications, and considerations for clinical practice.J. Magn. Reson. Imaging20154251190120210.1002/jmri.2498526119267
    [Google Scholar]
  7. WhiteN.S. DaleA.M. Distinct effects of nuclear volume fraction and cell diameter on high b-value diffusion MRI contrast in tumors.Magn. Reson. Med.20147251435144310.1002/mrm.2503924357182
    [Google Scholar]
  8. ChenY. LiR. YangY. MaD. ZhouJ. WangC. KongL. ChenY. YanF. FengY. Correlation analysis of structural and biomechanical properties of hepatocellular carcinoma tissue.J. Biomech.202214111122710.1016/j.jbiomech.2022.11122735917630
    [Google Scholar]
  9. ZhangH. LiW. FuC. GrimmR. ChenZ. ZhangW. QiuL. WangC. ZhangX. YueL. HuX. GuoW. TongT. Comparison of intravoxel incoherent motion imaging, diffusion kurtosis imaging, and conventional DWI in predicting the chemotherapeutic response of colorectal liver metastases.Eur. J. Radiol.202013010914910.1016/j.ejrad.2020.10914932659615
    [Google Scholar]
  10. LiJ. WangD. ChenT. XieF. LiR. ZhangX. JingZ. YangJ. OuJ. CaoJ. Magnetic resonance diffusion kurtosis imaging for evaluating stage of liver fibrosis in a rabbit model.Acad. Radiol.2019266e90e9710.1016/j.acra.2018.06.01830072289
    [Google Scholar]
  11. ShengR.F. WangH.Q. YangL. JinK.P. XieY.H. ChenC.Z. ZengM.S. Diffusion kurtosis imaging and diffusion-weighted imaging in assessment of liver fibrosis stage and necroinflammatory activity.Abdom. Radiol.20174241176118210.1007/s00261‑016‑0984‑427866239
    [Google Scholar]
  12. SonY. ParkJ. LeeJ.M. GrimmR. KimI.Y. Comparison of the effects of hepatic steatosis on monoexponential DWI, intravoxel incoherent motion diffusion-weighted imaging and diffusion kurtosis imaging.Acad. Radiol.202128Suppl. 1S203S20910.1016/j.acra.2021.04.01634119399
    [Google Scholar]
  13. LiC. YeJ. PengY. DouW. ShangS. WuJ. JafariR. GillenK.M. WangY. PrinceM. LuoX. Evaluation of diffusion kurtosis imaging in stratification of nonalcoholic fatty liver disease and early diagnosis of nonalcoholic steatohepatitis in a rabbit model.Magn. Reson. Imaging20196326727310.1016/j.mri.2019.08.03231445117
    [Google Scholar]
  14. JaeschkeH. DuanL. NguyenN.T. RamachandranA. Mitochondrial damage and biogenesis in acetaminophen-induced liver injury.Liver Res.201933-415015610.1016/j.livres.2019.10.00232655976
    [Google Scholar]
  15. YangD. LiD. LiJ. YangZ. WangZ. Systematic review: The diagnostic efficacy of gadoxetic acid-enhanced MRI for liver fibrosis staging.Eur. J. Radiol.202012510885710.1016/j.ejrad.2020.10885732113153
    [Google Scholar]
  16. VoglT.J. KümmelS. HammerstinglR. SchellenbeckM. SchumacherG. BalzerT. SchwarzW. MüllerP.K. BechsteinW.O. MackM.G. SöllnerO. FelixR. Liver tumors: Comparison of MR imaging with Gd-EOB-DTPA and Gd-DTPA.Radiology19962001596710.1148/radiology.200.1.86579468657946
    [Google Scholar]
  17. ColagrandeS. MazzoniL.N. MazzoniE. PradellaS. Effects of gadoxetic acid on quantitative diffusion-weighted imaging of the liver.J. Magn. Reson. Imaging201338236537010.1002/jmri.2397823239165
    [Google Scholar]
  18. ChoiJ.S. KimM.J. ChoiJ.Y. ParkM.S. LimJ.S. KimK.W. Diffusion-weighted MR imaging of liver on 3.0-Tesla system: Effect of intravenous administration of gadoxetic acid disodium.Eur. Radiol.20102051052106010.1007/s00330‑009‑1651‑819915849
    [Google Scholar]
  19. MaggioniM. KatkovnikV. EgiazarianK. FoiA. Nonlocal transform-domain filter for volumetric data denoising and reconstruction.IEEE Trans. Image Process.201322111913310.1109/TIP.2012.221072522868570
    [Google Scholar]
  20. JensenJ.H. HelpernJ.A. RamaniA. LuH. KaczynskiK. Diffusional kurtosis imaging: The quantification of non-gaussian water diffusion by means of magnetic resonance imaging.Magn. Reson. Med.20055361432144010.1002/mrm.2050815906300
    [Google Scholar]
  21. DesmetV.J. KnodellR.G. IshakK.G. Formulation and application of a numerical scoring system for assessing histological activity in asymptomatic chronic active hepatitis [Hepatology 1981;1:431–435].J. Hepatol.200338438238610.1016/S0168‑8278(03)00005‑912663226
    [Google Scholar]
  22. KooT.K. LiM.Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research.J. Chiropr. Med.201615215516310.1016/j.jcm.2016.02.01227330520
    [Google Scholar]
  23. CohenJ. Statistical Power for the Behavioral Sciences.Lawrence Erlbaum Associates1998
    [Google Scholar]
  24. ChenD. ZhaoX. XuH. RenH. LiuT. WangY. YangD. YangZ. Noninvasive assessment of APAP ( N -acetyl- p -aminophenol)-induced hepatotoxicity using multiple MRI parameters in an experimental rat model.J. Magn. Reson. Imaging20225661809181710.1002/jmri.2820335420237
    [Google Scholar]
  25. GiraudeauC. LeporqB. DoblasS. LagadecM. PastorC.M. DaireJ.L. Van BeersB.E. Gadoxetate-enhanced MR imaging and compartmental modelling to assess hepatocyte bidirectional transport function in rats with advanced liver fibrosis.Eur. Radiol.20172751804181110.1007/s00330‑016‑4536‑727553933
    [Google Scholar]
  26. MotosugiU. IchikawaT. TominagaL. SouH. SanoK. IchikawaS. ArakiT. Delay before the hepatocyte phase of Gd-EOB-DTPA-enhanced MR imaging: Is it possible to shorten the examination time?Eur. Radiol.200919112623262910.1007/s00330‑009‑1467‑619471935
    [Google Scholar]
  27. TangH. YuanY. DengL. WeiY. ChenG. ZhangT. NieL. WeiX. SongB. LiZ. Identification of diffusion weighted imaging would be affected before and after Gd-EOB-DTPA in patients with focal hepatic lesions: An observational study.Ann. Transl. Med.202210634610.21037/atm‑22‑96235433973
    [Google Scholar]
  28. MuhiA. IchikawaT. MotosugiU. SouH. SanoK. ArakiT. Diffusion- and T2-weighted MR imaging of the liver: Effect of intravenous administration of gadoxetic acid disodium.Magn. Reson. Med. Sci.201211318519110.2463/mrms.11.18523037563
    [Google Scholar]
  29. GujralJ.S. KnightT.R. FarhoodA. BajtM.L. JaeschkeH. Mode of cell death after acetaminophen overdose in mice: Apoptosis or oncotic necrosis?Toxicol. Sci.200267232232810.1093/toxsci/67.2.32212011492
    [Google Scholar]
  30. LiH.W. YanG.W. YangJ. ZhuoL.H. BhetuwalA. LongY.J. FengX. YaoH.C. ZouX.X. FengR.H. YangH.F. DuY. Quantitative analysis for detection and grading of hepatocellular carcinoma: Comparison of diffusion kurtosis imaging, intravoxel incoherent motion and conventional diffusion-weighted imaging.Oncol. Lett.202224540310.3892/ol.2022.1352336276491
    [Google Scholar]
  31. WangQ LiH YanX Histogram analysis of diffusion kurtosis magnetic resonance imaging in differentiation of pathologic Gleason grade of prostate cancer.Urol Oncol2015338337 10.1016/j.urolonc.2015.05.005
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056292975240602135201
Loading
/content/journals/cmir/10.2174/0115734056292975240602135201
Loading

Data & Media loading...

Supplements

Supplementary material is available on the Publisher’s website.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test