Skip to content
2000
image of A Comprehensive Review on Current Microwave Chemistry

Abstract

Background

Microwave technology is widely used in chemical synthesis and offers unique opportunities that are unachievable with the use of conventional methods of heating. This study aims to review the background, methods, and development in microwave-assisted chemistry and advances with a focus on its increasing relevance in various disciplines. Microwave chemistry promises to greatly decrease the time to complete a reaction from hours to minutes, and increase yield and purity all at once.

Methods

The rationale for this approach is based on specific patterns in communication, for example, dipolar polarization and ionic mobility that distinguish the effective transfer of energy to molecular systems. Details of these principles are explored and related to synthetic organic chemistry, materials chemistry, and green chemistry. The assessment of microwave-supported processes demonstrates advances in the preparation of heterocycles, medicinal chemistry, and polymer chemistry.

Results

These refined works not only increase the reaction efficiency but also do all this with the help of excluding hazardous reagents for the environment, which is a great idea concerning Sustainable Chemistry. Subsequent advancements of hybrid reactors and the utilization of real-time monitoring enhance the adaptability of microwave technology. Microwave synthetic chemistry in the present context involves nanotechnology and catalysis for the production of multifunctional materials and nanoscale particles. Furthermore, the paper discusses directions in environmental applications, including pollutant degradation and renewable energy systems, so as to demonstrate that the technology is relevant to fighting global issues. However, microwave chemistry comes with certain limitations such as scalability, the problem of non-uniform heating, and the long-term costs of purchasing exotic microwave equipment.

Conclusion

This research also presents a detailed description of these limitations and offers remedies as discussed by creating adaptive microwave systems for system and computational models for reaction optimization. Finally, this work closes with a discussion of potential perspectives for microwave chemistry, ranging from the concept of interdisciplinary approaches and the inclusion of artificial intelligence in reaction design and process monitoring. Because of its revolutionary capability, microwave chemistry is on the verge of revolutionizing the chemical industry.

Loading

Article metrics loading...

/content/journals/cmic/10.2174/0122133356382068250706090759
2025-07-17
2025-11-01
Loading full text...

Full text loading...

References

  1. Nomanbhay S. Ong M.Y. A review of microwave-assisted reactions for biodiesel production. Bioeng. 2017 4 2 57 10.3390/bioengineering4020057
    [Google Scholar]
  2. Wang N. Zou W. Li X. Liang Y. Wang P. Study and application status of the nonthermal effects of microwaves in chemistry and materials science – A brief review. RSC Advances 2022 12 27 17158 17181 10.1039/D2RA00381C 35755588
    [Google Scholar]
  3. Schmidt R. Gonjal J.P. Morán E. Microwave assisted hydrother-mal synthesis of nanoparticles. arXiv 2022 2203.02394 10.48550/arXiv.2203.02394
    [Google Scholar]
  4. Zhang N. Yin Y. Xu S.J. Chen W.S. 5-Fluorouracil: Mechanisms of resistance and reversal strategies. Molecules 2008 13 8 1551 1569 10.3390/molecules13081551 18794772
    [Google Scholar]
  5. D browska, S.; Chudoba, T.; Wojnarowicz, J.; ojkowski, W. Current trends in the development of microwave reactors for the synthesis of nanomaterials in laboratories and industries: A review. Crystals 2018 8 10 379 10.3390/cryst8100379
    [Google Scholar]
  6. Alazemi A.M. Dawood K.M. Al-Matar H.M. Tohamy W.M. Microwave-assisted chemoselective synthesis and photophysical properties of 2-arylazo-biphenyl-4-carboxamides from hydrazonals. RSC Advances 2023 13 36 25054 25068 10.1039/D3RA04558G 37614785
    [Google Scholar]
  7. Ma M.G. Zhu J.F. Zhu Y.J. Sun R.C. The microwave-assisted ionic-liquid method: A promising methodology in nanomaterials. Chem. Asian J. 2014 9 9 2378 2391 10.1002/asia.201402288 24895207
    [Google Scholar]
  8. Bizzi C.A. Cruz S.M. Schmidt L. Burrow R.A. Barin J.S. Paniz J.N.G. Flores E.M.M. Maxwell–Wagner effect applied to microwave-induced self-ignition: A novel approach for carbon-based materials. Anal. Chem. 2018 90 7 4363 4369 10.1021/acs.analchem.7b03731 29561585
    [Google Scholar]
  9. Meloni E. Iervolino G. Palma V. Basics of microwave heating and recent advances. Advances in Microwave-assisted Heterogeneous Catalysis. Royal Society of Chemistry 2023 1 24 10.1039/BK9781837670277‑00001
    [Google Scholar]
  10. Kumar R. Sahoo S. Joanni E. Singh R.K. A review on the current research on microwave processing techniques applied to graphene-based supercapacitor electrodes: An emerging approach beyond conventional heating. J. Energy. Chem 2022 74 252 282 10.1016/j.jechem.2022.06.051
    [Google Scholar]
  11. Zhao Z. Qing Y. Kong L. Xu H. Fan X. Yun J. Zhang L. Wu H. Advancements in microwave absorption motivated by interdisciplinary research. Adv. Mater. 2024 36 4 2304182 10.1002/adma.202304182 37870274
    [Google Scholar]
  12. Chen X. Yang J. Shen M. Chen Y. Yu Q. Xie J. Structure, function and advance application of microwave-treated polysaccharide: A review. Trends Food Sci. Technol. 2022 123 12 198 209 10.1016/j.tifs.2022.03.016
    [Google Scholar]
  13. Guzik P. Kulawik P. Zaj c, M.; Migda 322; W. Microwave applications in the food industry: An overview of recent developments. Crit. Rev. Food Sci. Nutr. 2022 62 29 7989 8008 10.1080/10408398.2021.1922871 33970698
    [Google Scholar]
  14. De la Hoz A. Diaz-Ortiz A. Moreno A. Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem. Soc. Rev. 2004 34 2 164 178 10.1039/B411438H
    [Google Scholar]
  15. Herrero M.A. Kremsner J.M. Kappe C.O. Nonthermal microwave effects revisited: On the importance of internal temperature monitoring and agitation in microwave chemistry. J. Org. Chem. 2008 73 1 36 47 10.1021/jo7022697 18062704
    [Google Scholar]
  16. Mhaske S.T. Mestry S.U. Patil D.A. Cross-linking of polymers by various radiations: Mechanisms and parameters. Radiation Technologies and Applications in Materials Science. CRC Press 2022 1 28 10.1201/9781003321910‑1
    [Google Scholar]
  17. Horikoshi S. Watanabe T. Narita A. Suzuki Y. Serpone N. The electromagnetic wave energy effect(s) in microwave–assisted organic syntheses (MAOS). Sci. Rep. 2018 8 1 5151 10.1038/s41598‑018‑23465‑5 29581443
    [Google Scholar]
  18. Javahershenas R. Makarem A. Klika K.D. Recent advances in microwave-assisted multicomponent synthesis of spiro heterocycles. RSC Advances 2024 14 8 5547 5565 10.1039/D4RA00056K 38357035
    [Google Scholar]
  19. Driowya M. Saber A. Marzag H. Demange L. Benhida R. Bougrin K. Microwave-assisted synthesis of bioactive six-membered heterocycles and their fused analogues. Molecules 2016 21 4 492 10.3390/molecules21040492 27089315
    [Google Scholar]
  20. Driowya M. Saber A. Marzag H. Demange L. Bougrin K. Benhida R. Microwave-assisted syntheses of bioactive seven-membered, macro-sized heterocycles and their fused derivatives. Molecules 2016 21 8 1032 10.3390/molecules21081032 27517892
    [Google Scholar]
  21. Nguyen N.P.U. Dang N.T. Doan L. Nguyen T.T.H. Synthesis of silver nanoparticles: From conventional to ‘modern’ methods — A review. Processes 2023 11 9 2617 10.3390/pr11092617
    [Google Scholar]
  22. Bucciol F. Colia M. Canova E. Grillo G. Calcio Gaudino E. Cravotto G. Microwave-assisted reductive amination under heterogeneous catalysis for the synthesis of ;-adrenergic agonist and related structures. Processes 2023 11 9 2602 10.3390/pr11092602
    [Google Scholar]
  23. Martina K. Cravotto G. Varma R.S. Impact of microwaves on organic synthesis and strategies toward flow processes and scaling up. J. Org. Chem. 2021 86 20 13857 13872 10.1021/acs.joc.1c00865 34125541
    [Google Scholar]
  24. Andrade M. Ansari L. Pombeiro A. Carvalho A. Martins A. Martins L. Fe@Hierarchical BEA zeolite catalyst for mw-assisted alcohol oxidation reaction: A greener approach. Catalysts 2020 10 9 1029 10.3390/catal10091029
    [Google Scholar]
  25. Deng X. Huang H. Huang S. Yang M. Wu J. Insight into the incredible effects of microwave heating: Driving changes in the structure, properties and functions of macromolecular nutrients in novel food. Front. Nutr. 2022 9 941527 10.3389/fnut.2022.941527 36313079
    [Google Scholar]
  26. Han Z. Cai M. Cheng J. Sun D.W. Effects of constant power microwave on the adsorption behaviour of myofibril protein to aldehyde flavour compounds. Food Chem. 2021 336 127728 10.1016/j.foodchem.2020.127728 32795782
    [Google Scholar]
  27. Zheng Y. Li Z. Zhang C. Zheng B. Tian Y. Effects of microwave-vacuum pre-treatment with different power levels on the structural and emulsifying properties of lotus seed protein isolates. Food Chem. 2020 311 125932 10.1016/j.foodchem.2019.125932 31862565
    [Google Scholar]
  28. Yi-xiao L. Da-ming F. Li-yun W. Hui-zhang L. Jian-xin Z. Hao Z. Growth and annihilation of microwave-induced free radicals in rice starch. Shipin Kexue 2014 35 114 117 10.7506/spkx1002‑6630‑201413021
    [Google Scholar]
  29. Asghari L. Zeynali F. Sahari M.A. Effects of boiling, deep-frying, and microwave treatment on the proximate composition of rainbow trout fillets: Changes in fatty acids, total protein, and minerals. J. Appl. Ichthyology 2013 29 4 847 853 10.1111/jai.12212
    [Google Scholar]
  30. Zhang Q. Li Z. Liu Z. Prasetyatama Y.D. Oh W.K. Yu I.K.M. Microwave-assisted biorefineries. Nat. Rev. Clean Technol 2025 1 269 287 10.1038/s44359‑025‑00033‑5
    [Google Scholar]
  31. Dolšak A. Mrgole K. Sova M. Microwave-assisted regioselective suzuki coupling of 2,4-dichloropyrimidines with aryl and heteroaryl boronic acids. Catalysts 2021 11 4 439 10.3390/catal11040439
    [Google Scholar]
  32. Nabil A. Nanomaterials for antibacterial textiles. In: Nanotechnology in Diagnosis, Treatment and Prophylaxis of Infectious Diseases. Academic Press 2015 191 216 10.1016/B978‑0‑12‑801317‑5.00012‑8
    [Google Scholar]
  33. Har-Kedar I. Bleehen N.M. Experimental and clinical aspects of hyperthermia applied to the treatment of cancer with special reference to the role of ultrasonic and microwave heating. Adv. Radiat. Biol. 1976 6 229 266 10.1016/B978‑0‑12‑035406‑1.50011‑7
    [Google Scholar]
  34. Sun J. Wang W. Yue Q. Review on microwave-matter interaction fundamentals and efficient microwave-associated heating strategies. Materials 2016 9 4 231 10.3390/ma9040231 28773355
    [Google Scholar]
  35. Das B. Reddy C. Kumar D. Krishnaiah M. Narender R. Simple A. A simple, advantageous synthesis of 5-substituted 1H-tetrazoles1. Synlett 2010 2010 3 391 394 10.1055/s‑0029‑1219150
    [Google Scholar]
  36. Mondal A. Mukhopadhyay C. Solvent-free microwave reactions towards significant organic transformations: A green approach. Tetrahedron Green Chem. 2024 4 100054 10.1016/j.tgchem.2024.100054
    [Google Scholar]
  37. Upadhya R. Kosuri S. Tamasi M. Meyer T.A. Atta S. Webb M.A. Gormley A.J. Automation and data-driven design of polymer therapeutics. Adv. Drug Deliv. Rev. 2021 171 1 28 10.1016/j.addr.2020.11.009 33242537
    [Google Scholar]
  38. Schroer J. High output coating R&D, accelerating the process from discovery to commercial output. Chemspeed Technologies 2007 2 80 83
    [Google Scholar]
  39. Das A. Banik B.K. Microwave-assisted enzymatic reactions. Microwaves in Chemistry Applications. Elsevier 2021 245 281 10.1016/B978‑0‑12‑822895‑1.00009‑6
    [Google Scholar]
  40. Palma V. Barba D. Cortese M. Martino M. Renda S. Meloni E. Microwaves and heterogeneous catalysis: A review on selected catalytic processes. Catalysts 2020 10 2 246 10.3390/catal10020246
    [Google Scholar]
  41. Horikoshi S. Serpone N. Role of microwaves in heterogeneous catalytic systems. Catal. Sci. Technol. 2014 4 5 1197 1210 10.1039/c3cy00753g
    [Google Scholar]
  42. Mishra R.R. Sharma A.K. Microwave–material interaction phenomena: Heating mechanisms, challenges and opportunities in material processing. Compos., Part A Appl. Sci. Manuf. 2016 81 78 79 10.1016/j.compositesa.2015.10.035
    [Google Scholar]
  43. Cheng Y.C. Chang S.C. Shu C.M. Effects of volatile organic compounds on the explosion characteristics of polyethylene dust. Process Saf. Environ. Prot. 2022 168 114 122 10.1016/j.psep.2022.09.074
    [Google Scholar]
  44. Seol S.K. Kim D. Jung S. Hwu Y. Microwave synthesis of gold nanoparticles: Effect of applied microwave power and solution pH. Mater. Chem. Phys. 2011 131 1-2 331 335 10.1016/j.matchemphys.2011.09.050
    [Google Scholar]
  45. Goyal H. Chen T.Y. Chen W. Vlachos D.G. A review of microwave-assisted process intensified multiphase reactors. Chem. Eng. J. 2022 430 133183 10.1016/j.cej.2021.133183
    [Google Scholar]
  46. Sauks J.M. Mallik D. Lawryshyn Y. Bender T. Organ M. A continuous-flow microwave reactor for conducting high-temperature and high-pressure chemical reactions. Org. Process Res. Dev. 2014 18 11 1310 1314 10.1021/op400026g
    [Google Scholar]
  47. Kapustina O. Burmakina P. Gubina N. Serov N. Vinogradov V. User-friendly and industry-integrated AI for medicinal chemists and pharmaceuticals. AI Chem. 2024 2 2 100072 10.1016/j.aichem.2024.100072
    [Google Scholar]
  48. Puhlmann N. Vidaurre R. Kümmerer K. Designing greener active pharmaceutical ingredients: Insights from pharmaceutical industry into drug discovery and development. Eur. J. Pharm. Sci. 2024 192 106614 10.1016/j.ejps.2023.106614 37858896
    [Google Scholar]
  49. X, Qin, X.; Kim, D.; Piao, Y. Metal-organic frameworks-derived novel nanostructured electrocatalysts for oxygen evolution reaction. Carbon Energy 2021 3 66 100 10.1002/cey2.80
    [Google Scholar]
  50. Zhu H. Huang Y. Yin S. Zhang W. Microwave plasma setups for CO2 conversion: A mini-review. Green Energy. Res. 2024 2 1 100061 10.1016/j.gerr.2024.100061
    [Google Scholar]
  51. Braff W.A. Mueller J.M. Trancik J.E. Value of storage technologies for wind and solar energy. Nat. Clim. Chang. 2016 6 10 964 969 10.1038/nclimate3045
    [Google Scholar]
  52. Aminuddin R.N.H. Lau K.S. Winie T. Chin S.X. Chia C.H. Microwave-assisted reduction of graphene oxide for an electrochemical supercapacitor: Structural and capacitance behavior. Mater. Chem. Phys. 2021 262 124274 10.1016/j.matchemphys.2021.124274
    [Google Scholar]
  53. Kim H. Lamichhane N. Kim C. Shrestha R. Innovations in building diagnostics and condition monitoring: A comprehensive review of infrared thermography applications. Buildings 2023 13 11 11 10.3390/buildings14010011
    [Google Scholar]
  54. Xu Y. Liu X. Cao X. Huang C. Liu E. Qian S. Liu X. Wu Y. Dong F. Qiu C.W. Qiu J. Hua K. Su W. Wu J. Xu H. Han Y. Fu C. Yin Z. Liu M. Roepman R. Dietmann S. Virta M. Kengara F. Zhang Z. Zhang L. Zhao T. Dai J. Yang J. Lan L. Luo M. Liu Z. An T. Zhang B. He X. Cong S. Liu X. Zhang W. Lewis J.P. Tiedje J.M. Wang Q. An Z. Wang F. Zhang L. Huang T. Lu C. Cai Z. Wang F. Zhang J. Artificial intelligence: A powerful paradigm for scientific research. Innovation 2021 2 4 100179 10.1016/j.xinn.2021.100179 34877560
    [Google Scholar]
  55. Jabbar S.S. Ayad A.A. The importance of retrosynthesis in organic synthesis. GBJP 2021 24 7 51 75
    [Google Scholar]
  56. Gawande M.B. Shelke S.N. Zboril R. Varma R.S. Microwave-assisted chemistry: Synthetic applications for rapid assembly of nanomaterials and organics. Acc. Chem. Res. 2014 47 4 1338 1348 10.1021/ar400309b 24666323
    [Google Scholar]
  57. Riaz U. Zia J. Microwave-assisted rapid degradation of DDT using nanohybrids of PANI with SnO2 derived from Psidium Guajava extract. Environ. Pollut. 2020 259 113917 10.1016/j.envpol.2020.113917 31926395
    [Google Scholar]
  58. Vera-Choqqueccota S. Belmekki B.E.Y. Alouini M-S. Teodorescu M. Haussler D. Mostajo-Radji M.A. Reducing education inequalities through cloud-enabled live-cell biotechnology. Trends Biotechnol. 2024 (Aug) 10.1016/j.tibtech.2024.07.015 39209603
    [Google Scholar]
  59. Shazman A. Mizrahi S. Cogan U. Shimoni E. Examining for possible non-thermal effects during heating in a microwave oven. Food Chem. 2007 103 2 444 453 10.1016/j.foodchem.2006.08.024
    [Google Scholar]
  60. Taye M.M. Understanding of machine learning with deep learning: Architectures, workflow, applications and future directions. Computers 2023 12 5 91 10.3390/computers12050091
    [Google Scholar]
  61. Kumar A. Kuang Y. Liang Z. Sun X. Microwave chemistry, recent advancements and eco-friendly microwave-assisted synthesis of nanoarchitectures and their applications: A review. Mater. Today Nano 2020 11 6 100076 10.1016/j.mtnano.2020.100076
    [Google Scholar]
/content/journals/cmic/10.2174/0122133356382068250706090759
Loading
/content/journals/cmic/10.2174/0122133356382068250706090759
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test