Current Medicinal Chemistry - Volume 30, Issue 26, 2023
Volume 30, Issue 26, 2023
-
-
Outlining the Molecules Tested In Vivo for Chagas Disease, Malaria, and Schistosomiasis Over the Last Six Years - A Literature Review Focused on New Synthetic Drug Identities and Repurposing Strategies
Background: COVID-19 disrupted NTD programs in 60% of countries, impairing public health goals. Thus, boosting NTD's research knowledge is demanding, and in vivo screening of candidates allows for the prospect of promising options based on their overall profile. Objective: In this work, we highlighted the relevant research done between 2015-2021 in the fields of synthetic and repurposed drugs that were tested in vivo for Chagas disease, malaria, and schistosomiasis. Methods: MEDLINE, PUBMED, CAPES PERIODIC, and ELSEVIER databases were used for a comprehensive literature review of the last 6 years of research on each area/disease. Results: Overall, research focused on nitro heterocyclic, aromatic nitro, nucleoside, and metal-based scaffolds for analogue-based drug generation. Repurposing was widely assessed, mainly with heterocyclic drugs, their analogues, and in combinations with current treatments. Several drug targets were aimed for Chagas treatment, specific ones such as iron superoxide dismutase, and more general ones, such as mitochondrial dysfunction. For malaria, hemozoin is still popular, and for schistosomiasis, more general structural damage and/or reproduction impairment were aimed at in vitro analysis of the mechanism of action. Conclusion: Latest in vivo results outlined trends for each disease - for Chagas Disease, heterocyclics as thiazoles were successfully explored; for Malaria, quinoline derivatives are still relevant, and for schistosomiasis, repurposed drugs from different classes outstood in comparison to synthetic compounds. This study uprises the continuous development of Chagas disease, malaria, and schistosomiasis drugs, providing researchers with tools and information to address such unmet therapeutic needs.
-
-
-
Targeting Mitochondria for the Prevention and Treatment of Nonalcoholic Fatty Liver Disease: Polyphenols as a Non-pharmacological Approach
Scope: Nonalcoholic fatty liver disease (NAFLD) has a high and growing prevalence globally. Mitochondria are fundamental in regulating cell energy homeostasis. Nevertheless, mitochondria control mechanisms can be exceeded in this context of energy overload. Damaged mitochondria worsen NAFLD progression. Diet and lifestyle changes are the main recommendations for NAFLD prevention and treatment. Some polyphenols have improved mitochondrial function in different NAFLD and obesity models. Objective: The study aims to discuss the potential role of polyphenols as a nonpharmacological approach targeting mitochondria to prevent and treat NAFLD, analyzing the influence of polyphenols' chemical structure, limitations and clinical projections. Methods: In vivo and in vitro NAFLD models were considered. Study searches were performed using the following keywords: nonalcoholic fatty liver disease, liver steatosis, mitochondria, mitochondrial activity, mitochondrial dynamics, mitochondrial dysfunction, mitochondrial morphology, mitochondrial cristae, fusion, fission, polyphenols, flavonoids, anthocyanins, AND/OR bioactive compounds. Conclusion: Polyphenols are a group of diverse bioactive molecules whose bioactive effects are highly determined by their chemical structure. These bioactive compounds could offer an interesting non-pharmacological approach to preventing and treating NAFLD, regulating mitochondrial dynamics and function. Nevertheless, the mitochondria' role in subjects with NAFLD treatment is not fully elucidated. The dosage and bioavailability of these compounds should be addressed when studied.
-
-
-
Nano/Microcarriers in Drug Delivery: Moving the Timeline to Contemporary
Authors: Ana Vujačić Nikezić and Jasmina Grbović NovakovićTreatment of various diseases, especially cancer treatment, includes the potential use of different types of nanoparticles and nanostructures as drug carriers. However, searching for less toxic and more efficient therapy requires further progress, wherein recent developments in medicine increasingly include the use of various advanced nanostructures. Their more successful application might be achieved by leveling imbalances between the potentiality of different nanostructures and the demands required for their safe use. Biocompatibility, biodegradability, prolonged circulation time and enhanced accumulation and uptake by cells are some of the key preconditions for their usage in efficient drug delivery. Thanks to their greatly tunable functions, they are major building blocks for manufacturing novel materials. Nevertheless, given that their toxicity is questionable, their practical application is challenging. Hereof, before entering the sphere of human consumption, it is of critical importance to perform more studies regarding their toxicity and drug distribution. This review emphasizes recent advances in nanomedicine, employing different kinds of conventionally used nanoparticles as well as novel nanoparticles and nanostructures. Special emphasis is placed on micro/nanomotors (MNMs), discussing their opportunities, limitations, challenges and possible applications in drug delivery and outlining some perspectives in the nanomedicine area.
-
-
-
The Immunogenic Potential of PCSK9 Peptide Vaccine in Mice
Aim: To evaluate the immunogenic potential of the carrier-free peptide-based anti-PCSK9 (proprotein convertase subtilisin/kexin 9) vaccine in albino mice. Methods: The immunogenic pcsk9 peptide and 0.4% alum adjuvant were mixed thoroughly at a 1:1 ratio and used as a vaccine formulation. To assess the humoral immune response, animals' blood was sampled two weeks after the last immunization. The ELISA method was employed to measure serum anti-PCSK9 antibody titers, PCSK9 concentrations, and PCSK9/LDLR interaction. Results: ELISA analysis showed significant induction of IgG antibody titers by PCSK9 peptide vaccine in vaccinated mice sera compared to the control mice (in male and female mice were 12000±586 and 11566±642, respectively, p<0.001). Mechanistic analyses showed a significant reduction in serum PCSK9 concentrations by vaccine-induced antibodies in vaccine groups compared to the control groups (in male mice by 29±5 ng/mL (22.4%), p<0.001 and female mice by 26±5 ng / mL (21.0%), p<0.001). Serum concentrations of PCSK9 in control and vaccine groups were 131±8.6 ng / mL and 102±8.1 ng/ml in male mice and 124±6 ng/ml and 98±10 ng/ml in female mice, respectively. Moreover, vaccine-induced antibodies inhibited the PCSK9-LDLR interaction in male and female groups by 34% and 26%, respectively. No significant difference was detected between the male and female groups in all tests (p>0.05). Conclusion: According to our results, the PCSK9 peptide vaccine provoked the humoral immune system in albino mice to produce functional antibodies that inhibit plasma PCSK9. These effects were seen in both genders without any significant difference.
-
-
-
2-Nucleobase-substituted 4,6-Diaminotriazine Analogs: Synthesis and Anti-cancer Activity in 5-Fluorouracil-sensitive and Resistant Colorectal Cancer Cells
Background: Cancer continues to be the second leading cause of death worldwide, with colorectal cancer (CRC) being the third most common type. Despite significant advances in cancer therapies, the current treatment of CRC remains suboptimal. In addition, the effectiveness of available chemotherapeutic drugs such as 5-Fluorouracil (5-FU) is limited by CRC-acquired resistance. Methods: In this study, we provide innovative approaches employed in synthesizing four novel nucleobase analogs. Equally, we describe the effects of these compounds on proliferation, migration, aggregation, and adhesion of 5-FU-sensitive (HCT116) and -resistant (5-FU-R-HCT116) human CRC cells. In either cell type, our synthesized novel analogs significantly inhibited cell viability in a concentration- and time-dependent manner. This highlights the higher potency of these novel analogs. In addition, these compounds attenuated migration and adhesion of both cell types while they promoted homotypic cell-cell interaction. Results: These changes were reflected by the downregulation of matrix metalloproteases (MMP-2 and MMP-9). Furthermore, our analogs exhibited potent anti-angiogenic activity in vivo. Conclusion: These novel nucleobase analogs reduced the level of secreted vascular endothelial growth factor (VEGF) and nitric oxide (NO) production in both 5-FU-sensitive and -resistant CRC cells. Taken together, our data highlight the potential chemotherapeutic properties of our novel analogs against CRC, including the 5-FU-resistant form.
-
Volumes & issues
-
Volume 32 (2025)
-
Volume (2025)
-
Volume 31 (2024)
-
Volume 30 (2023)
-
Volume 29 (2022)
-
Volume 28 (2021)
-
Volume 27 (2020)
-
Volume 26 (2019)
-
Volume 25 (2018)
-
Volume 24 (2017)
-
Volume 23 (2016)
-
Volume 22 (2015)
-
Volume 21 (2014)
-
Volume 20 (2013)
-
Volume 19 (2012)
-
Volume 18 (2011)
-
Volume 17 (2010)
-
Volume 16 (2009)
-
Volume 15 (2008)
-
Volume 14 (2007)
-
Volume 13 (2006)
-
Volume 12 (2005)
-
Volume 11 (2004)
-
Volume 10 (2003)
-
Volume 9 (2002)
-
Volume 8 (2001)
-
Volume 7 (2000)
Most Read This Month
