Current Medicinal Chemistry - Volume 29, Issue 42, 2022
Volume 29, Issue 42, 2022
-
-
Azapeptides -A History of Synthetic Milestones and Key Examples
Authors: Kai Fan Cheng, Sonya VanPatten, Mingzhu He and Yousef Al-AbedFor over 50 years of azapeptide synthetic techniques, developments have renewed the field of peptidomimetic therapeutics. Azapeptides are close surrogates of natural peptides: they contain a substitution of the amino acid α-carbon by a nitrogen atom. Goserelin (1989) and Atazanavir (2003) are two well-known, FDA-approved azapeptide-based drugs for the treatment of cancers and HIV infection, providing evidence for the successful clinical implementation of this class of therapeutic. This review highlights the azapeptides in recent medicinal chemistry applications and synthetic milestones. We describe the current techniques for azapeptide bond formation by introducing azapeptide coupling reagents and chain elongation methods both in solution and solid-phase strategies.
-
-
-
Heterotrimeric G Protein α-Subunits - Structures, Peptide-Derived Inhibitors, and Mechanisms
Authors: Jan H. Voss and Christa E. MüllerG protein-coupled receptors are the largest protein family in the human body and represent the most important class of drug targets. They receive extracellular signals and transduce them into the cytosol. The guanine nucleotide-binding Gα proteins represent the main relays by which GPCRs induce intracellular effects. More than 800 different GPCRs interact with 16 Gα proteins belonging to 4 families, Gαi, Gαs, Gαq, and Gα12/13. The direct inhibition of Gα protein subunits rather than the modulation of GPCR subtypes has been proposed as a novel strategy for the treatment of complex diseases, including inflammation and cancer. This mini-review presents an introduction to G protein structure and function and describes achievements in the development of peptidic and peptide-derived Gα protein inhibitors. They have become indispensable pharmacological tools, and some of them exhibit significant potential as future drugs.
-
-
-
Selenium-containing Peptides and their Biological Applications
Selenium (Se) has been known for its beneficial biological roles for several years, but interest in this trace element has seen a significant increase in the past couple of decades. It has been reported to be a part of important bioactive organic compounds, such as selenoproteins and amino acids, including selenocysteine (SeCys), selenomethionine (SeMet), selenazolidine (SeAzo), and selenoneine. The traditional Se supplementations (primarily as selenite and selenomethionine), though have been shown to carry some benefits, also have associated toxicities, thereby paving the way for the organoselenium compounds, especially the selenoproteins and peptides (SePs/SePPs) that offer several health benefits beyond fulfilling the elementary nutritional Se needs. This review aims to showcase the applications of selenium-containing peptides that have been reported in recent decades. This article summarizes their bioactivities, including neuroprotective, antiinflammatory, anticancer, antioxidant, hepatoprotective, and immunomodulatory roles. This will offer the readers a sneak peek into the current advancements to invoke further developments in this emerging research area.
-
-
-
Comparative Study to Characterise the Pharmaceutical Potential of Synthesised Snake Venom Bradykinin-Potentiating Peptides In Vivo
Background: Bradykinin-potentiating peptides (BPPs) are snake venom peptides inhibiting the angiotensin-converting enzyme (ACE). ACE plays an important role in the regulation of blood pressure. BPPs lead to the development of ACE inhibitors for the treatment of hypertension. Objective: The objective of the present work was to carry out a comprehensive comparative study of four synthesised snake venom BPPs in vivo. Methods: Four synthesised snake venom BPPs were administered to rats via the intraperitoneal route for 15 days at a fixed dose. Lisinopril was used as a comparative standard. Thirty male albino rats were divided into six groups: A, B, C, D, E (lisinopril), and F (control). Group F was maintained as the control group and given only saline. After 15 days, blood samples and tissues were removed for the study of selective biochemical parameters and histomorphometric analysis. Statistical evaluation of all results was also performed. Results: The results indicated that peptide I, with the sequence ZSAPGNEAIPP, was highly toxic and adversely affected all the biochemical and histological parameters studied in this work. Peptide II (ZNWPHPQIPP) and peptide IV (ZQWAQGRAPHPP) showed lower toxicity. None of the BPPs raised the serum creatinine level and exhibited nephroprotective effects. Although lisinopril raised the creatinine level, it showed a protective role towards the pancreas and lungs in parallel. Conclusion: The present work shows that although there is a high sequence similarity between the four BPPs, their in vivo activity varies. The sequences of peptide II and peptide IV can be used to improve the design of current ACE inhibitors used for hypertension treatment.
-
-
-
Proteolytic Activity against the Distal Polybasic Tract of the Gamma Subunit of the Epithelial Sodium Channel ENaC in Nephrotic Urine
Authors: Matthias Wörn, Hubert Kalbacher and Ferruh ArtuncBackground: Experimental nephrotic syndrome in mice leads to proteolytic activation of the epithelial sodium channel ENaC, possibly involving the distal polybasic tract of its γ-subunit (183RKRK). Objective: We sought to determine if urine samples from both nephrotic mice and a cohort of patients with acute nephrotic syndrome contain a specific proteolytic activity against this region of γ-ENaC. Methods: A peptide substrate consisting of amino acids 180-194 of murine γ-ENaC was N-terminally coupled to a fluorophore, yielding AMCA-FTGRKRKISGKIIHK. The substrate was incubated with nephrotic urine samples from mice as well as patients with or without the serine protease inhibitor, aprotinin. The digested peptides were separated on a reverse phase HPLC and detected with a fluorescence detector (350/450 nm). Peptide masses of the peaks were determined with a MALDI-TOF mass spectrometer. In addition, urinary proteolytic activity was quantitated using AMC-coupled substrates reflecting different cleavage sites within the polybasic tract. Results: No significant proteolytic activity against the substrate was found in the urine of healthy humans or mice. Incubation with urine samples of nephrotic patients (n = 8) or mice subjected to three different models of experimental nephrotic syndrome (n = 4 each) led to cleavage of the substrate within the polybasic tract prevented by the serine protease inhibitor aprotinin. The most dominant cleavage product was FTGRKR in both species, which was confirmed using quantitative measurements with FTGRKR- AMC. Conclusion: Nephrotic urine from both humans and mice contains aprotinin-sensitive proteolytic activity against the distal polybasic tract of γ-ENaC, reflecting excretion of active proteases in the urine or proteasuria.
-
-
-
Comprehensive Structural and Functional Characterization of a Seed γ-thionin as a Potent Bioactive Molecule Against Fungal Pathogens and Insect Pests
Background: Fungi and insect pests ruin stored crop grain, which results in millions of dollars of damage, presenting an ongoing challenge for farmers in addition to diminishing the safety of stored food. A wide-range defensive system against pathogens is needed to reduce or even eliminate the dependence of the crop yield upon the use of pesticides. Plant defensins (γ-thionins) are antimicrobial peptides (AMPs) that are a component of the host defense system. They are known to interact with cell membranes to exhibit antifungal and insecticidal activity. They exhibit a broad range of activities against fungi and insects and are effective at low concentrations. Thionins act on membranes, greatly reducing the development of pathogen resistance. Objective: The aim of this study is to investigate a bioactive molecule that acts against fungal pathogens and stored grain insect pests. Methods: γ-thionin protein was extracted from Brassica oleracea L. var. capitata f. alba (white cabbage) seed powder in phosphate buffer (100 mM, pH 7.0) and was identified by MALDI-TOF/TOF. The crude extract was subjected to 70% ammonium sulfate saturation followed by gel filtration chromatography. The disc diffusion assay along with a microtiter bioassay was used to determine the antifungal activity of the protein against phytopathogenic fungi. The insecticidal efficacy was evaluated by feeding insect pests with food contaminated with the purified protein. Additionally, an in silico molecular structure prediction study of the protein was performed using Auto Dock Vina for molecular docking of the protein with either fungal membrane moieties or α-amylase from Tenebrio molitor L. MD simulations of protein-ligand complexes were conducted using Schrodinger’s Desmond module. Results: γ-Thionin (BoT) was purified from white cabbage seeds and showed 100% homology with thionin (Brassica oleracea L. var. viridis) and 80% homology with defensin-like protein 1 (Raphanus sativus L.), respectively. BoT significantly inhibited the mycelial growth of Aspergillus niger van Tieghem and Aspergillus flavus Link at a concentration of 2 μM. Similarly, 0.12 μM BoT treatment resulted in significant mortality of Tribolium castaneum Herbst and Sitophilus oryzae L. Molecular docking and MD simulation of BoT confirmed the strong binding affinity with fungal membrane moieties (phosphatidylinositol 4,5-bisphosphate and phosphatidic acid), which causes disruption of the cell membrane and leakage of the cellular contents, leading to cell death. BoT blocked the active site of α-amylase, and as a result of the inactivation of this gut enzyme, the digestive systems of insects were disturbed, resulting in their deaths. Conclusion: This study revealed that γ-thionin is a good antifungal and insecticidal agent that could be used as an alternate to fungicides and insecticides.
-
-
-
Prothymosin α and its C-Terminal Immunoreactive Decapeptide Show No Evidence of Acute Toxicity: A Preliminary In Silico, In Vitro and In Vivo Investigation
Authors: Anastasios I. Birmpilis, Panagiotis Vitsos, Ioannis V. Kostopoulos, Lillian Williams, Kyriaki Ioannou, Pinelopi Samara, Chrysoula-Evangelia Karachaliou, Ioannis F. Voutsas, Elena Alyfanti, Nikolaos Angelis, Nikolaos G. Gavalas, Themis Gkraikou, Niki Kappa, Eleftheria Klagkou, Persefoni Klimentzou, Spiridoula Nikou, Nikos E. Papaioannou, Margarita Skopeliti, David Toukli, Meletios-Athanasios Dimopoulos, Aristotelis Bamias, Evangelia Livaniou, Hubert Kalbacher, Ourania E. Tsitsilonis and Wolfgang VoelterBackground: Members of the α-thymosin family have long been studied for their immunostimulating properties. Among them, the danger-associated molecular patterns (DAMPs) prothymosin α (proTα) and its C-terminal decapeptide proTα(100–109) have been shown to act as immunomodulators in vitro, due to their ability to promote T helper type 1 (Th1) responses. Recently, we verified these findings in vivo, showing that both proTα and proTα(100-109) enhance antitumor-reactive T cell-mediated responses. Methods: In view of the eventual use of proTα and proTα(100-109) in humans, we investigated their safety profile in silico, in human leukocytes and cancer cell lines in vitro, and in immunocompetent mice in vivo, in comparison to the proTα derivative thymosin alpha 1 (α1), a 28-mer peptide extensively studied for its safety in clinical trials. Results: In silico prediction via computational tools showed that all three peptide sequences likely are non-toxic or do not induce allergic regions. In vitro, pro- Tα, proTα(100-109) and Tα1 did not affect the viability of human cancer cell lines and healthy donor-derived leukocytes, did not promote apoptosis or alter cell cycle distribution. Furthermore, mice injected with proTα, proTα(100-109) and Tα1 at doses equivalent to the suggested dose regimen of Tα1 in humans, did not show signs of acute toxicity, whereas proTα and proTα(100-109) increased the levels of proinflammatory and Th1- type cytokines in their peripheral blood. Conclusion: Our preliminary findings suggest that proTα and proTα(100-109), even at high concentrations, are non-toxic in vitro and in an acute toxicity model in vivo; moreover, we show that the two peptides retain their immunomodulatory properties in vivo and, eventually, could be considered for therapeutic use in humans.
-
-
-
Selective Cytotoxicity and Changes in Protein Expression of T24 Bladder Carcinoma Permanent Cell Line after Treatment with Hemocyanins
Background: Some molluscan hemocyanins (Hcs) have significant immunological and antitumor potential, enabling their application in oncology. The antitumor activity of Hcs from marine snails Rapana venosa (RvH), giant keyhole limpet Megathura crenulata (KLH) and garden snails Helix lucorum (HlH), as well as their different derivatives, were studied in vitro on a permanent T24 cell line of bladder cancer and normal urothelial cell line HL 10/29 compared to doxorubicin. Methods: The antiproliferative activity of the tested Hcs was determined using the WST-1 assay and BrdU ELISA assay. Morphological changes in both urothelial cell lines were confirmed by fluorescence microscopy. The proteomic analysis of a bladder cancer cell line before and after treatment with functional unit (FU) βc-HlH-h using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and mass spectrometry revealed differences in the expression of some proteins. Results: Studies prove that the T24 tumor cell line is dose- and time-dependent, sensitive to the action of the tested isoforms, and it glycosylated FU of these hemocyanins. Selective inhibition of T24 cell growth was observed after incubation with structural subunits (βc-HlH, RvHI and RvHII) and FUs (βc-HlH-h and RvHII-e). Additionally, fluorescent microphotographs did not show apoptotic or necrotic alterations in the normal urothelial cell line HL 10/29. The FU βc-HlH-h demonstrated the highest antiproliferative effect (similarly to doxorubicin), in which predominantly apoptotic and less late apoptotic or necrotic changes in the tumor cells were observed. Several downand up-regulated proteins identified by proteome analysis may be associated with the apoptosis pathway. Conclusion: The present study illustrated the selectivity of the cytotoxic effect of Hcs against the Т24 cancer cell line. This is the first report of protein expression in T24 human bladder cancer cells under the influence of FU βc-HlH-h. That is probably due to the specific oligosaccharide structures rich in methylated hexoses exposed on the surface of βc-HlH-h.
-
Volumes & issues
-
Volume 32 (2025)
-
Volume (2025)
-
Volume 31 (2024)
-
Volume 30 (2023)
-
Volume 29 (2022)
-
Volume 28 (2021)
-
Volume 27 (2020)
-
Volume 26 (2019)
-
Volume 25 (2018)
-
Volume 24 (2017)
-
Volume 23 (2016)
-
Volume 22 (2015)
-
Volume 21 (2014)
-
Volume 20 (2013)
-
Volume 19 (2012)
-
Volume 18 (2011)
-
Volume 17 (2010)
-
Volume 16 (2009)
-
Volume 15 (2008)
-
Volume 14 (2007)
-
Volume 13 (2006)
-
Volume 12 (2005)
-
Volume 11 (2004)
-
Volume 10 (2003)
-
Volume 9 (2002)
-
Volume 8 (2001)
-
Volume 7 (2000)
Most Read This Month
