Current Medicinal Chemistry - Volume 16, Issue 7, 2009
Volume 16, Issue 7, 2009
-
-
Peptides for Tumour Therapy and Diagnosis: Current Status and Future Directions
Authors: Laura Zaccaro, Annarita d. Gatto, Carlo Pedone and Michele SavianoThe use of peptides as targeting tools has been validated in different applications. In particular radiolabelled peptides with adequate stability, receptor-binding properties and biokinetic behaviour have been investigated as an important class of radiopharmaceuticals for cancer pathology imaging and therapy. This review focuses on recent progress in design and synthetic modifications of small biologically active peptides used in diagnosis and therapy. In particular, we report the current development and optimization of suitable peptides for targeting three relevant biological receptors (CCK, somatostatin, and integrin receptors) involved in specific tumour diseases.
-
-
-
Neuro-Transmitters in the Central Nervous System & their Implication in Learning and Memory Processes
This review article gives an overview of a number of central neuro-transmitters, which are essential for integrating many functions in the central nervous system (CNS), such as learning, memory, sleep cycle, body movement, hormone regulation and many others. Neurons use neuro-transmitters to communicate, and a great variety of molecules are known to fit the criteria to be classified as such. A process shared by all neuro-transmitters is their release by excocytosis, and we give an outline of the molecular events and protein complexes involved in this mechanism. Synthesis, transport, inactivation, and cellular signaling can be very diverse when different neuro-transmitters are compared, and these processes are described separately for each neuro-transmitter system. Here we focus on the most well known neurotransmitters: acetyl-choline, catechol-amines (dopamine and nor-adrenalin), indole-amine (serotonin), glutamate, and γ- amino-butyric acid (GABA). Glutamate is the major excitatory neuro-transmitter in the brain and its actions are counterbalanced by GABA, which is the major inhibitory substance in the CNS. A balance of neuronal transmission between these two neuro-transmitters is essential to normal brain function. Acetyl-choline, serotonin and catechol-amines have a more modulatory function in the brain, being involved in many neuronal circuits. Apart from summarizing the current knowledge about the synthesis, release and receptor signaling of these transmitters, some disease states due to alteration of their normal neuro-transmission are also described.
-
-
-
Epilepsy, Regulation of Brain Energy Metabolism and Neurotransmission
Authors: Jean-Francois Cloix and Tobias HevorSeizures are the result of a sudden and temporary synchronization of neuronal activity, the reason for which is not clearly understood. Astrocytes participate in the control of neurotransmitter storage and neurotransmission efficacy. They provide fuel to neurons, which need a high level of energy to sustain normal and pathological neuronal activities, such as during epilepsy. Various genetic or induced animal models have been developed and used to study epileptogenic mechanisms. Methionine sulfoximine induces both seizures and the accumulation of brain glycogen, which might be considered as a putative energy store to neurons in various animals. Animals subjected to methionine sulfoximine develop seizures similar to the most striking form of human epilepsy, with a long pre-convulsive period of several hours, a long convulsive period during up to 48 hours and a post convulsive period during which they recover normal behavior. The accumulation of brain glycogen has been demonstrated in both the cortex and cerebellum as early as the pre-convulsive period, indicating that this accumulation is not a consequence of seizures. The accumulation results from an activation of gluconeogenesis specifically localized to astrocytes, both in vivo and in vitro. Both seizures and brain glycogen accumulation vary when using different inbred strains of mice. C57BL/6J is the most “resistant” strain to methionine sulfoximine, while CBA/J is the most “sensitive” one. The present review describes the data obtained on methionine sulfoximine dependent seizures and brain glycogen in the light of neurotransmission, highlighting the relevance of brain glycogen content in epilepsies.
-
-
-
DNA Repair in Normal and Cancer Stem Cells, with Special Reference to the Central Nervous System
More LessStem cells build and maintain organisms. Accordingly, they are particularly well-protected from damage to DNA and other cellular components. This feature becomes a serious drawback when stem cells transform and develop cancer, because they resist to radiation and chemotherapy. Various mechanisms ensure protection of stem cells. In normal stem cells enhanced DNA repair is often one of them. Whether the same holds for cancer stem cells still is an open question.
-
-
-
Bronchial Asthma, Chronic Obstructive Pulmonary Disease and NF-κB
Respiratory diseases place a considerable burden on global health. Bronchial asthma describes many heterogeneous clinical phenotypes that result in chronic bronchial inflammation. Chronic obstructive pulmonary disease (COPD) is one of the most common adult respiratory disorders characterized by chronic airflow limitation that is not fully reversible and is associated with an abnormal inflammatory response of the lungs to noxious particles and gases. Recognition of the global importance and rising prevalence of these diseases and the absence of effective treatments has led to concerted efforts to improve the efficacy of the existing drugs and develop new ones that target cellular and molecular mechanisms that underlie disease pathogenesis. The transcription factor nuclear factor kappa B (NF-κB) regulates the expression of a wide array of genes that are involved in the molecular pathobiology of the lung by regulating cellular immune responses, cell adhesion, differentiation, proliferation, angiogenesis and apoptosis. In this work, we review published clinical and experimental studies that link the inhibition of NF-κB activity with the treatment of asthma and COPD. Our end point is to help identify pathway-specific inhibitors of NF-κB that can be used for the treatment of specific human ailments.
-
-
-
Polymorphism and Crystallization of Active Pharmaceutical Ingredients (APIs)
Authors: Jie Lu and Sohrab RohaniActive pharmaceutical ingredients (APIs), frequently delivered to the patient in the solid-state as part of an approved dosage form, can exist in such diverse solid forms as polymorphs, pseudopolymorphs, salts, co-crystals and amorphous solids. Various solid forms often display different mechanical, thermal, physical and chemical properties that can remarkably influence the bioavailability, hygroscopicity, stability and other performance characteristics of the drug. Hence, a thorough understanding of the relationship between the particular solid form of an active pharmaceutical ingredient (API) and its functional properties is important in selecting the most suitable form of the API for development into a drug product. In past decades, there have been significant efforts on the discovery, selection and control of the solid forms of APIs and bulk drugs. This contribution discusses the thermodynamics and kinetics of polymorphic systems, the characterization of polymorphs, and the transformation between polymorphs. The major techniques for polymorph discovery and control developed in the past years are discussed as well.
-
-
-
Testicular Cell Junction: A Novel Target for Male Contraception
Authors: Nikki P.Y. Lee, Elissa W.P. Wong, Dolores D. Mruk and C. Y. ChengEven though various contraceptive methods are widely available, the number of unwanted pregnancies is still on the rise in developing countries, pressurizing the already resource limited nations. One of the major underlying reasons is the lack of effective, low cost, and safe contraceptives for couples. During the past decade, some studies were performed using animal models to decipher if the Sertoli-germ cell junction in the testis is a target for male fertility regulation. Some of these study models were based on the use of hormones and/or chemicals to disrupt the hypothalamicpituitary- testicular axis (e.g., androgen-based implants or pills) and others utilized a panel of chemical entities or synthetic peptides to perturb spermatogenesis either reversibly or non-reversibly. Among them, adjudin, a potential male contraceptive, is one of the compounds exerting its action on the unique adherens junctions, known as ectoplasmic specializations, in the testis. Since the testis is equipped with inter-connected cell junctions, an initial targeting of one junction type may affect the others and these accumulative effects could lead to spermatogenic arrest. This review attempts to cover an innovative theme on how male infertility can be achieved by inducing junction instability and defects in the testis, opening a new window of research for male contraceptive development. While it will still take much time and effort of intensive investigation before a product can reach the consumable market, these findings have provided hope for better family planning involving men.
-
Volumes & issues
-
Volume 32 (2025)
-
Volume (2025)
-
Volume 31 (2024)
-
Volume 30 (2023)
-
Volume 29 (2022)
-
Volume 28 (2021)
-
Volume 27 (2020)
-
Volume 26 (2019)
-
Volume 25 (2018)
-
Volume 24 (2017)
-
Volume 23 (2016)
-
Volume 22 (2015)
-
Volume 21 (2014)
-
Volume 20 (2013)
-
Volume 19 (2012)
-
Volume 18 (2011)
-
Volume 17 (2010)
-
Volume 16 (2009)
-
Volume 15 (2008)
-
Volume 14 (2007)
-
Volume 13 (2006)
-
Volume 12 (2005)
-
Volume 11 (2004)
-
Volume 10 (2003)
-
Volume 9 (2002)
-
Volume 8 (2001)
-
Volume 7 (2000)
Most Read This Month
