Current Medicinal Chemistry - Volume 11, Issue 13, 2004
Volume 11, Issue 13, 2004
-
-
Chemical Diversity of Bioactive Marine Natural Products: An Illustrative Case Study
More LessThe marine environment contains a number of plants, animals and micro organisms, which, due to the unique adaptations to their habitat, elaborate a wide diversity of natural products with specific bioactivities. These products provide a rich source of chemical diversity that can be used to design and develop new potentially useful therapeutic agents. The huge variety of the structures present in marine organisms has been illustrated through the case study of the sponge Plakortis simplex, whose chemical analysis, started in our laboratories about ten years ago, revealed an incredible variety and abundance of secondary metabolites. The obtained results have been presented with the intention of drawing some conclusions of general relevance. Particularly, the problem of the limited availability of natural compounds for both structural and preliminary pharmacological studies has been discussed, this issue becoming a serious obstacle when the pharmacological research reaches a more advanced stage. Furthermore, the origin of the chemodiversity in Plakortis simplex and, in general, in marine invertebrates has been discussed; in this respect, the possible cooperative role of symbiotic micro-organisms in the biosynthesis of the varied metabolic content typical of these organisms has been considered.
-
-
-
Advanced Preclinical and Clinical Trials of Natural Products and Related Compounds from Marine Sources
Authors: David J. Newman and Gordon M. CraggThe marine environment has proven to be a very rich source of extremely potent compounds that have demonstrated significant activities in anti-tumor, anti-inflammatory, analgesia, immuno-modulation, allergy and anti-viral assays. Although the case can and has been made that the nucleosides such as Ara-A and Ara-C are derived from knowledge gained from investigations of bioactive marine nucleosides, no drug directly from marine sources (whether isolated or by total synthesis) has yet made it to the commercial sector in any human disease. However, as shown in this review, there are now significant numbers of very interesting molecules that have come from marine sources, or have been synthesized as a result of knowledge gained from a prototypical compound, that are either in or approaching Phase III clinical trials in cancer, analgesia and allergy, with a very substantial number of other, quite different potential agents following in their wake, in these and in other diseases.
-
-
-
Drugs from the Sea: Conopeptides as Potential Therapeutics
Authors: Bruce G. Livett, Ken R. Gayler and Zeinab KhalilMarine cone snails from the genus Conus are estimated to consist of up to 700 species. These predatory molluscs have devised an efficient venom apparatus that allows them to successfully capture polychaete worms, other molluscs or in some cases fish as their primary food sources. The toxic venom used by the cone shells contains up to 50 different peptides that selectively inhibit the function of ion channels involved in the transmission of nerve signals in animals. Each of the 700 Conus species contains a unique set of peptides in their venom. Across the genus Conus, the conotoxins represent an extensive array of ion channel blockers each showing a high degree of selectivity for particular types of channels. We have undertaken a study of the conotoxins from Australian species of Conus that have the capacity to inhibit specifically the nicotinic acetylcholine receptors in higher animals. These conotoxins have been identified by mass spectroscopy and their peptide sequences in some cases deduced by the application of modern molecular biology to the RNA extracted from venom ducts. The molecular biological approach has proven more powerful than earlier protein / peptide based technique tor the detection of novel conotoxins [1,2]. Novel conotoxins detected in this way have been further screened for their abilities to modify the responses of tissues to pain stimuli as a first step in describing their potential as lead compounds for novel drugs. This review describes the progress made by several research groups to characterise the properties of conopeptides and to use them as drug leads for the development of novel therapeutics for the treatment of a range of neurological conditions.
-
-
-
Mechanism Targeted Discovery of Antitumor Marine Natural Products
Authors: Dale G. Nagle, Yu-Dong Zhou, Flor D. Mora, Kaleem A. Mohammed and Yong-Pil KimAntitumor drug discovery programs aim to identify chemical entities for use in the treatment of cancer. Many strategies have been used to achieve this objective. Natural products have always played a major role in anticancer medicine and the unique metabolites produced by marine organisms have increasingly become major players in antitumor drug discovery. Rapid advances have occurred in the understanding of tumor biology and molecular medicine. New insights into mechanisms responsible for neoplastic disease are significantly changing the general philosophical approach towards cancer treatment. Recently identified molecular targets have created exciting new means for disrupting tumor-specific cell signaling, cell division, energy metabolism, gene expression, drug resistance and blood supply. Such tumor-specific treatments could someday decrease our reliance on traditional cytotoxicity-based chemotherapy and provide new less toxic treatment options with significantly fewer side effects. Novel molecular targets and state-of-the-art, molecular mechanism-based screening methods have revitalized antitumor research and these changes are becoming an ever-increasing component of modern antitumor marine natural products research. This review describes marine natural products identified using tumor-specific mechanism-based assays for regulators of angiogenesis, apoptosis, cell cycle, macromolecule synthesis, mitochondrial respiration, mitosis, multidrug efflux and signal transduction. Special emphasis is placed on natural products directly discovered using molecular mechanism-based screening.
-
-
-
New Trends in the Design of Drugs Against Alzheimer's Disease
Authors: P. Francotte, E. Graindorge, S. Boverie, P. d. Tullio and B. PirotteFirst described by Alois Alzheimer in 1907, Alzheimer's disease (AD) is the most common dementia type, affecting approximately 20 million people worldwide. As the population is getting older, AD is a growing health problem. AD is currently treated by symptomatic drugs, the acetylcholinesterase inhibitors, based on the cholinergic hypothesis (1976). During the past decade, advances in neurobiology have conducted to the identification of new targets. Although some of these innovative approaches tend to delay onset of AD, others are still symptomatic. In this review, we present an overview of the several strategies and new classes of compounds against AD.
-
-
-
Endothelin and Subarachnoid Hemorrhage-Induced Cerebral Vasospasm: Pathogenesis and Treatment
Authors: Chih-Lung Lin, Arco Y. Jeng, Shen-Long Howng and Aij-Lie KwanEndothelin (ET)-mediated vasoconstriction has been implicated in the pathophysiology of various disorders, e.g. hypertension, chronic heart failure, acute renal failure, pulmonary hypertension, and subarachnoid hemorrhage (SAH)-induced cerebral vasospasm. The potential involvement of ETs in cerebral vasospasm following SAH has triggered considerable interest in designing therapeutic strategies to inhibit biological effects of ET. Major approaches include: (a) reducing the levels of circulating ET- 1 by the the specific anti- ET- 1 antibodies, (b) antagonizing the ET receptors, and (c) suppressing the biosynthesis of ET- 1. To date, numerous antagonists of ETA and / or ETB receptors have been discovered, and some are under clinical evaluation. Inhibitors of endothelin-converting enzymes (ECEs), which catalyze the biosynthesis of ET-1, have also been synthesized. Two types of ECE-1 inhibitors have been evaluated in various animal disease models: dual ECE-1 / neutral endopeptidase 24.11 (NEP) inhibitors and selective ECE-1 inhibitors. In this article, the effects of ET receptor antagonists and ECE-1 inhibitors on the prevention and reversal of SAHinduced cerebral vasospasm in preclinical animal models are reviewed.
-
-
-
Engineered Killer Mimotopes: New Synthetic Peptides for Antimicrobial Therapy
Authors: W. Magliani, S. Conti, A. Salati, S. Arseni, L. Ravanetti, R. Frazzi and L. PolonelliThis review deals with a novel approach to produce synthetic antibiotic peptides (killer mimotopes), similar to those described for the conversion of epitopes into peptide mimotopes, allowing their use as surrogate vaccines. Synthetic peptides pertaining to the complementary determining regions (CDRs) of a recombinant antiidiotypic antibody (PaKTscFv), which mimic the wide spectrum of microbicidal activity of a killer toxin produced by the yeast Pichia anomala (PaKT), have proven to act as structural or functional mimotopes of PaKT. This activity appeared to be mediated by interaction with specific cell wall killer toxin receptors (KTRs), mainly constituted by β glucans. Killer mimotopes have shown in vitro an impressive microbicidal activity against Candida albicans. They were adopted as a model of PaKT- and PaKTscFvsusceptible microorganisms. Optimization through alanine scanning led to the generation of an engineered decapeptide (KP) of a CDR-L1 pertaining antibody fragment with an enhanced in vitro microbicidal activity. It had a potent therapeutic effect against experimental vaginal and systemic candidiasis in normal and immunodeficient mice caused by flucanozole susceptible and resistant yeast isolates. KP exerted a microbicidal activity in vitro against multidrug-resistant eukaryotic and prokaryotic pathogenic microorganisms, which was neutralized by interaction with laminarin (β 1,3-glucan). To our knowledge, KP represents the prototype of an engineered peptide fragment derived from a microbicidal recombinant antiidiotypic antibody. It is capable of exerting antimicrobial activity in vitro and a therapeutic effect in vivo presumably acting through interaction with the β glucan KTR component in the cell walls of pathogenic microorganisms.
-
-
-
Chemical Mediators of Gallbladder Dysmotility
Authors: M. J. Pozo, P. J. Camello and G. M. MaweIn order to accomplish its contribution to the digestive process, the gallbladder must contract appropriately during its emptying phases and it must be able to relax adequately for filling to occur. A variety of neuro-hormonal inputs to gallbladder smooth muscle coordinate the gallbladder emptying process with other events occurring in the bowel. Gallbladder dysmotility can disrupt the normal flow of bile to the small bowel, resulting in digestive dysfunction. In addition to this, alterations in gallbladder motility may play a role in pathological conditions, such as cholesterol gallstone formation and cholecystitis. It is still not entirely clear whether impaired gallbladder emptying is a cause or consequence of cholesterol gallstones, but recent experimental evidences demonstrate that cholesterol can directly affect the plasma membrane of gallbladder smooth muscle cells to cause impaired contraction. In addition, gallbladder emptying is impaired in acute gallbladder inflammation, probably as the result of the deleterious neural and muscular actions of inflammatory mediators such as reactive oxygen species, prostaglandins and histamine. It should also be noted that opiate treatments in critically ill patients can reduce gallbladder motility by inhibiting neurotransmitter release, and may contribute to the onset of acalculous cholecystitis, which is associated with significant morbidity in these patients.
-
Volumes & issues
-
Volume 32 (2025)
-
Volume (2025)
-
Volume 31 (2024)
-
Volume 30 (2023)
-
Volume 29 (2022)
-
Volume 28 (2021)
-
Volume 27 (2020)
-
Volume 26 (2019)
-
Volume 25 (2018)
-
Volume 24 (2017)
-
Volume 23 (2016)
-
Volume 22 (2015)
-
Volume 21 (2014)
-
Volume 20 (2013)
-
Volume 19 (2012)
-
Volume 18 (2011)
-
Volume 17 (2010)
-
Volume 16 (2009)
-
Volume 15 (2008)
-
Volume 14 (2007)
-
Volume 13 (2006)
-
Volume 12 (2005)
-
Volume 11 (2004)
-
Volume 10 (2003)
-
Volume 9 (2002)
-
Volume 8 (2001)
-
Volume 7 (2000)
Most Read This Month
