Skip to content
2000
Volume 32, Issue 13
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

There is no abstract available.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0929867332999241228174430
2024-12-28
2025-09-08
Loading full text...

Full text loading...

/deliver/fulltext/cmc/32/13/CMC-32-13-01.html?itemId=/content/journals/cmc/10.2174/0929867332999241228174430&mimeType=html&fmt=ahah

References

  1. AbrahamW.C. JonesO.D. GlanzmanD.L. Is plasticity of synapses the mechanism of long-term memory storage?NPJ Sci. Learn.201941910.1038/s41539‑019‑0048‑y 31285847
    [Google Scholar]
  2. AsokA. LeroyF. RaymanJ.B. KandelE.R. Molecular mechanisms of the memory trace.Trends Neurosci.2019421142210.1016/j.tins.2018.10.005 30391015
    [Google Scholar]
  3. ChklovskiiD.B. MelB.W. SvobodaK. Cortical rewiring and information storage.Nature2004431701078278810.1038/nature03012 15483599
    [Google Scholar]
  4. JohansenJ.P. CainC.K. OstroffL.E. LeDouxJ.E. Molecular mechanisms of fear learning and memory.Cell2011147350952410.1016/j.cell.2011.10.009 22036561
    [Google Scholar]
  5. KandelE.R. The molecular biology of memory storage: A dialogue between genes and synapses.Science200129455441030103810.1126/science.1067020 11691980
    [Google Scholar]
  6. KandelE.R. DudaiY. MayfordM.R. The molecular and systems biology of memory.Cell2014157116318610.1016/j.cell.2014.03.001 24679534
    [Google Scholar]
  7. GallistelC.R. The coding question.Trends Cogn. Sci.201721749850810.1016/j.tics.2017.04.012 28522379
    [Google Scholar]
  8. GallistelC.R. The physical basis of memory.Cognition202121310453310.1016/j.cognition.2020.104533 33375954
    [Google Scholar]
  9. QueenanB.N. RyanT.J. GazzanigaM.S. GallistelC.R. On the research of time past: The hunt for the substrate of memory.Ann. N. Y. Acad. Sci.20171396110812510.1111/nyas.13348 28548457
    [Google Scholar]
  10. RamónY. CajalS.R. Estructura de los centros nerviosos de las aves.Rev. Trim. Histol. Normal Patol.18881130
    [Google Scholar]
  11. SherringtonC. The Integrative Action of the Nervous System.New Haven, CTYale University Press1906
    [Google Scholar]
  12. Ramon y CajalS. The Croonian lecture. La fine structure des centres nerveux.Proc. R. Soc. Lond.189455331-33544446810.1098/rspl.1894.0063
    [Google Scholar]
  13. De NR.L. Analysis of the activity of the chains of internuncial neurons.J. Neurophysiol.19381320724410.1152/jn.1938.1.3.207
    [Google Scholar]
  14. HebbD.O. The Organisation of Behaviour.New YorkWiley and Sons1949
    [Google Scholar]
  15. MarkramH. LübkeJ. FrotscherM. SakmannB. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs.Science1997275529721321510.1126/science.275.5297.213 8985014
    [Google Scholar]
  16. MarkramH. GerstnerW. SjöströmP.J. Spike-timing-dependent plasticity: A comprehensive overview.Front. Synaptic Neurosci.20124210.3389/fnsyn.2012.00002 22807913
    [Google Scholar]
  17. RahmanA. ChoudharyM.I. Bioactive natural products as a potential source of new pharmacophores. A theory of memory.Pure Appl. Chem.200173355556010.1351/pac200173030555
    [Google Scholar]
  18. RahmanA. ChoudharyM.I. Biodiversity: A wonderful source of exciting new pharmacophores. Further to a new theory of memory.Pure Appl. Chem.200274451151710.1351/pac200274040511
    [Google Scholar]
  19. RahmanA. ChoudharyM.I. Biodiversity as a source of new pharmacophores: A new theory of memory III.Pure Appl. Chem.2005771758110.1351/pac200577010075
    [Google Scholar]
  20. AmtulZ. RahmanA. Neural plasticity and memory, is memory encoded in hydrogen bonding patterns?Neuroscientist201622191810.1177/1073858414547934 25168338
    [Google Scholar]
  21. AmtulZ. RahmanA. Neural plasticity and memory: Molecular mechanism.Rev. Neurosci.201526325326810.1515/revneuro‑2014‑0075 25995328
    [Google Scholar]
  22. RahmanA. Molecular basis of memory: A grand orchestra of pattern formation by hydrogen bonds?Curr. Med. Chem.201925425800580210.2174/092986732542181220144316 30777577
    [Google Scholar]
  23. RahmanA. ChoudharyM.I. ShaheenF. GanesanA. SimjeeS.U. RazaM. New anticonvulsant compounds.U.S. Patent 20,080,004,3532008
  24. ChatterjeeS. BahlE. MukherjeeU. WalshE.N. ShettyM.S. YanA.L. VanrobaeysY. LedermanJ.D. GieseK.P. MichaelsonJ. AbelT. Endoplasmic reticulum chaperone genes encode effectors of long-term memory.Sci. Adv.2022812eabm606310.1126/sciadv.abm6063 35319980
    [Google Scholar]
  25. BlissT.V.P. CollingridgeG.L. A synaptic model of memory: Long-term potentiation in the hippocampus.Nature19933616407313910.1038/361031a0 8421494
    [Google Scholar]
  26. KandelE.R. TaucL. Heterosynaptic facilitation in neurones of the abdominal ganglion of Aplysia depilans.J. Physiol.1965181112710.1113/jphysiol.1965.sp007742 5866283
    [Google Scholar]
  27. BlissT.V.P. LømoT. Long‐lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path.J. Physiol.1973232233135610.1113/jphysiol.1973.sp010273 4727084
    [Google Scholar]
  28. ItoM. Cerebellar control of the vestibulo-ocular reflex--around the flocculus hypothesis.Annu. Rev. Neurosci.19825127529710.1146/annurev.ne.05.030182.001423 6803651
    [Google Scholar]
  29. MalenkaR.C. BearM.F. LTP and LTD: An embarrassment of riches.Neuron200444152110.1016/j.neuron.2004.09.012 15450156
    [Google Scholar]
  30. BayerK.U. SchulmanH. CaM kinase: Still inspiring at 40.Neuron2019103338039410.1016/j.neuron.2019.05.033 31394063
    [Google Scholar]
  31. LismanJ. SchulmanH. ClineH. The molecular basis of CaMKII function in synaptic and behavioural memory.Nat. Rev. Neurosci.20023317519010.1038/nrn753 11994750
    [Google Scholar]
  32. LismanJ. YasudaR. RaghavachariS. Mechanisms of CaMKII action in long-term potentiation.Nat. Rev. Neurosci.201213316918210.1038/nrn3192 22334212
    [Google Scholar]
  33. BenkeT.A. LüthiA. IsaacJ.T.R. CollingridgeG.L. Modulation of AMPA receptor unitary conductance by synaptic activity.Nature1998393668779379710.1038/31709 9655394
    [Google Scholar]
  34. DerkachV. BarriaA. SoderlingT.R. Ca2+/calmodulin-kinase II enhances channel conductance of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors.Proc. Natl. Acad. Sci. USA19999663269327410.1073/pnas.96.6.3269 10077673
    [Google Scholar]
  35. KristensenA.S. JenkinsM.A. BankeT.G. SchousboeA. MakinoY. JohnsonR.C. HuganirR. TraynelisS.F. Mechanism of Ca2+/calmodulin-dependent kinase II regulation of AMPA receptor gating.Nat. Neurosci.201114672773510.1038/nn.2804 21516102
    [Google Scholar]
  36. PennA.C. ZhangC.L. GeorgesF. RoyerL. BreillatC. HosyE. PetersenJ.D. HumeauY. ChoquetD. Hippocampal LTP and contextual learning require surface diffusion of AMPA receptors.Nature2017549767238438810.1038/nature23658 28902836
    [Google Scholar]
  37. ShirkeA.M. MalinowR. Mechanisms of potentiation by calcium-calmodulin kinase II of postsynaptic sensitivity in rat hippocampal CA1 neurons.J. Neurophysiol.19977852682269210.1152/jn.1997.78.5.2682 9356418
    [Google Scholar]
  38. MatusA. Actin-based plasticity in dendritic spines.Science2000290549275475810.1126/science.290.5492.754 11052932
    [Google Scholar]
  39. MatsuzakiM. HonkuraN. Ellis-DaviesG.C.R. KasaiH. Structural basis of long-term potentiation in single dendritic spines.Nature2004429699376176610.1038/nature02617 15190253
    [Google Scholar]
  40. NägerlU.V. EberhornN. CambridgeS.B. BonhoefferT. Bidirectional activity-dependent morphological plasticity in hippocampal neurons.Neuron200444575976710.1016/j.neuron.2004.11.016 15572108
    [Google Scholar]
  41. OkamotoK.I. NagaiT. MiyawakiA. HayashiY. Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity.Nat. Neurosci.20047101104111210.1038/nn1311 15361876
    [Google Scholar]
  42. ZhouQ. HommaK.J. PooM. Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses.Neuron200444574975710.1016/j.neuron.2004.11.011 15572107
    [Google Scholar]
  43. CarlisleH.J. KennedyM.B. Spine architecture and synaptic plasticity.Trends Neurosci.200528418218710.1016/j.tins.2005.01.008 15808352
    [Google Scholar]
  44. HotulainenP. HoogenraadC.C. Actin in dendritic spines: Connecting dynamics to function.J. Cell Biol.2010189461962910.1083/jcb.201003008 20457765
    [Google Scholar]
  45. SpenceE.F. SoderlingS.H. Actin out: Regulation of the synaptic cytoskeleton.J. Biol. Chem.201529048286132862210.1074/jbc.R115.655118 26453304
    [Google Scholar]
  46. ZhangH. Ben ZablahY. ZhangH. JiaZ. Rho signaling in synaptic plasticity, memory, and brain disorders.Front. Cell Dev. Biol.2021972907610.3389/fcell.2021.729076 34671600
    [Google Scholar]
  47. ArberS. BarbayannisF.A. HanserH. SchneiderC. StanyonC.A. BernardO. CaroniP. Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase.Nature1998393668780580910.1038/31729 9655397
    [Google Scholar]
  48. Ben ZablahY. MerovitchN. JiaZ. The role of ADF/cofilin in synaptic physiology and Alzheimer’s disease.Front. Cell Dev. Biol.2020859499810.3389/fcell.2020.594998 33282872
    [Google Scholar]
  49. GoleyE.D. WelchM.D. The ARP2/3 complex: An actin nucleator comes of age.Nat. Rev. Mol. Cell Biol.200671071372610.1038/nrm2026 16990851
    [Google Scholar]
  50. HotulainenP. LlanoO. SmirnovS. TanhuanpääK. FaixJ. RiveraC. LappalainenP. Defining mechanisms of actin polymerization and depolymerization during dendritic spine morphogenesis.J. Cell Biol.2009185232333910.1083/jcb.200809046 19380880
    [Google Scholar]
  51. HussainN.K. ThomasG.M. LuoJ. HuganirR.L. Regulation of AMPA receptor subunit GluA1 surface expression by PAK3 phosphorylation.Proc. Natl. Acad. Sci. USA201511243E5883E589010.1073/pnas.1518382112 26460013
    [Google Scholar]
  52. TurrigianoG.G. NelsonS.B. Homeostatic plasticity in the developing nervous system.Nat. Rev. Neurosci.2004529710710.1038/nrn1327 14735113
    [Google Scholar]
  53. CrickF. Neurobiology: Memory and molecular turnover.Nature1984312599010110.1038/312101a0 6504122
    [Google Scholar]
  54. GuskjolenA. KenneyJ.W. de la ParraJ. YeungB.A. JosselynS.A. FranklandP.W. Recovery of “lost” infant memories in mice.Curr. Biol.2018281422832290.e310.1016/j.cub.2018.05.059 29983316
    [Google Scholar]
  55. PerusiniJ.N. CajigasS.A. CohensedghO. LimS.C. PavlovaI.P. DonaldsonZ.R. DennyC.A. Optogenetic stimulation of dentate gyrus engrams restores memory in Alzheimer’s disease mice.Hippocampus201727101110112210.1002/hipo.22756 28667669
    [Google Scholar]
  56. PollS. MittagM. MusacchioF. JustusL.C. GiovannettiE.A. SteffenJ. WagnerJ. ZohrenL. SchochS. SchmidtB. JacksonW.S. EhningerD. FuhrmannM. Memory trace interference impairs recall in a mouse model of Alzheimer’s disease.Nat. Neurosci.202023895295810.1038/s41593‑020‑0652‑4 32514139
    [Google Scholar]
  57. RoyD.S. AronsA. MitchellT.I. PignatelliM. RyanT.J. TonegawaS. Memory retrieval by activating engram cells in mouse models of early Alzheimer’s disease.Nature2016531759550851210.1038/nature17172 26982728
    [Google Scholar]
  58. ZhaoB. SunJ. ZhangX. MoH. NiuY. LiQ. WangL. ZhongY. Long-term memory is formed immediately without the need for protein synthesis-dependent consolidation in Drosophila.Nat. Commun.2019101455010.1038/s41467‑019‑12436‑7 31591396
    [Google Scholar]
  59. KimW.B. ChoJ.H. Encoding of discriminative fear memory by input-specific LTP in the amygdala.Neuron201795511291146.e510.1016/j.neuron.2017.08.004 28823727
    [Google Scholar]
  60. KimW.B. ChoJ.H. Encoding of contextual fear memory in hippocampal–amygdala circuit.Nat. Commun.2020111138210.1038/s41467‑020‑15121‑2 32170133
    [Google Scholar]
  61. FeinbergE.H. VanHovenM.K. BendeskyA. WangG. FetterR.D. ShenK. BargmannC.I. GFP Reconstitution Across Synaptic Partners (GRASP) defines cell contacts and synapses in living nervous systems.Neuron200857335336310.1016/j.neuron.2007.11.030 18255029
    [Google Scholar]
  62. ChoiJ.H. SimS.E. KimJ. ChoiD.I. OhJ. YeS. LeeJ. KimT. KoH.G. LimC.S. KaangB.K. Interregional synaptic maps among engram cells underlie memory formation.Science2018360638743043510.1126/science.aas9204 29700265
    [Google Scholar]
  63. ChoiD.I. KimJ. LeeH. KimJ. SungY. ChoiJ.E. VenkatS.J. ParkP. JungH. KaangB.K. Synaptic correlates of associative fear memory in the lateral amygdala.Neuron20211091727172726.e310.1016/j.neuron.2021.07.003 34363751
    [Google Scholar]
  64. NonakaA. ToyodaT. MiuraY. Hitora-ImamuraN. NakaM. EguchiM. YamaguchiS. IkegayaY. MatsukiN. NomuraH. Synaptic plasticity associated with a memory engram in the basolateral amygdala.J. Neurosci.201434289305930910.1523/JNEUROSCI.4233‑13.2014 25009263
    [Google Scholar]
  65. ZhouY. ZhuH. LiuZ. ChenX. SuX. MaC. TianZ. HuangB. YanE. LiuX. MaL. A ventral CA1 to nucleus accumbens core engram circuit mediates conditioned place preference for cocaine.Nat. Neurosci.201922121986199910.1038/s41593‑019‑0524‑y 31719672
    [Google Scholar]
  66. LamprechtR. LeDouxJ. Structural plasticity and memory.Nat. Rev. Neurosci.200451455410.1038/nrn1301 14708003
    [Google Scholar]
  67. EngertF. BonhoefferT. Dendritic spine changes associated with hippocampal long-term synaptic plasticity.Nature19993996731667010.1038/19978 10331391
    [Google Scholar]
  68. DudaiY. EisenbergM. Rites of passage of the engram: Reconsolidation and the lingering consolidation hypothesis.Neuron20044419310010.1016/j.neuron.2004.09.003 15450162
    [Google Scholar]
  69. RamanD.V. O’LearyT. Optimal plasticity for memory maintenance during ongoing synaptic change.eLife202110e6291210.7554/eLife.62912 34519270
    [Google Scholar]
  70. RobertsC.M. SunX. HarrisD. MeunierF.A. Gas5 RNA regulates synaptic RNA trafficking and clustering to modulate neuronal excitability.Nat. Neurosci.202326345146310.1038/s41593‑023‑01234‑5
    [Google Scholar]
  71. SmithA.B. JonesK.L. LiuY. AndersonR.P. KIBRA acts as a persistent synaptic tag to stabilize memory traces via interaction with PKMzeta.Sci. Adv.2024106eabe293710.1126/sciadv.abe2937 38335285
    [Google Scholar]
  72. BauerP.J. LarkinaM. FivushR. Infantile amnesia: New perspectives on the neurodevelopmental underpinnings of early memory loss.Nat. Rev. Neurosci.202425426728210.1038/s41583‑024‑01045‑1
    [Google Scholar]
/content/journals/cmc/10.2174/0929867332999241228174430
Loading

  • Article Type:
    Editorial
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test