Skip to content
2000
Volume 29, Issue 7
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

The bacterial cell wall peptidoglycan (PG) is a dynamic structure that is constantly synthesized, re-modeled and degraded during bacterial division and growth. Postsynthetic modifications modulate the action of endogenous autolysis during PG lysis and remodeling for growth and sporulation, but also they are a mechanism used by pathogenic bacteria to evade the host innate immune system. Modifications of the glycan backbone are limited to the C-2 amine and C-6 hydroxyl moieties of either GlcNAc or MurNAc residues. This paper reviews the functional roles and properties of peptidoglycan de-Nacetylases (distinct PG GlcNAc and MurNAc deacetylases) and recent progress through genetic studies and biochemical characterization to elucidate their mechanism of action, 3D structures, substrate specificities and biological functions. Since they are virulence factors in pathogenic bacteria, peptidoglycan deacetylases are potential targets for the design of novel antimicrobial agents.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0929867328666210915113723
2022-02-01
2025-08-18
Loading full text...

Full text loading...

/content/journals/cmc/10.2174/0929867328666210915113723
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test