Skip to content
2000
Volume 17, Issue 17
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

To date, the pharmacotherapy of Alzheimer's disease (AD) has relied on acetylcholinesterase (AChE) inhibitors (AChEIs) and, more recently, an N-methyl-D-aspartate receptor (NMDAR) antagonist. AD is a multifactorial syndrome with several target proteins contributing to its etiology. “Multi-target-directed ligands” (MTDLs) have great potential for treating complex diseases such as AD because they can interact with multiple targets. The design of compounds that can hit more than one specific AD target thus represents an innovative strategy for AD treatment. Tacrine was the first AChEI introduced in therapy. Recent studies have demonstrated its ability to interact with different AD targets. Furthermore, numerous tacrine homo- and heterodimers have been developed with the aim of improving and enlarging its biological profile beyond its ability to act as an AChEI. Several tacrine hybrid derivatives have been designed and synthesized with the same goal. This review will focus on and summarize the last two years of research into the development of tacrine derivatives able to hit AD targets beyond simple AChE inhibition.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/092986710791111206
2010-06-01
2025-09-29
Loading full text...

Full text loading...

/content/journals/cmc/10.2174/092986710791111206
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test