Skip to content
2000
image of Neuroinflammatory Human Brain Organoids Enable Comprehensive Drug Screening Studies: Fingolimod and its Analogues in Focus

Abstract

Introduction

The absence of physiologically relevant models for neuroinflammatory brain disorders, such as multiple sclerosis (MS), highlights the need for improved drug screening platforms. To bridge this gap, this study aimed to develop a human brain organoid (hBO) model incorporating essential neural cell types, including astrocytes, microglia, and oligodendrocytes.

Methods

hBOs were generated from H9 stem cells, and neuroinflammatory characteristics were elicited by lipopolysaccharide (LPS). The expression of specific neuronal and inflammatory markers was assessed through qRT-PCR, immunofluorescence staining (IFS), and ELISA.

Results

IFS of mature hBOs with anti-SOX2, anti-SATB2, anti-MAPT, anti-GFAP, anti-MBP, and anti-IBA1 antibodies and images collected with the confocal microscope confirmed the differentiation of H9 cells into cortical neurons, astrocytes, microglia, and oligodendrocyte cell types. Elevated GFAP, IBA1, NF-κB, and IL-6 levels, along with reduced CNPase expression with LPS treatment, were considered reflective of MS-like pathology and were used to test fingolimod and its derivatives. Fingolimod and all its derivatives, specifically ST-1505, decreased MAPT (2.1-fold in ELISA, 1.7-fold in IFS), GFAP (1.8-fold in IFS), TNFα (5.4-fold in qRT-PCR), and FABP (1.5-fold in ELISA) levels, and increased IL-10 (11-fold in qRT-PCR) and MBP (2.9-fold in IFS) levels.

Discussion

The present data collectively showed LPS to evoke neuroinflammation in the hBO model, while fingolimod and its derivatives, particularly ST-1505, exhibited significant anti-inflammatory and neuroprotective properties by counteracting these evoked changes in the hBO model.

Conclusion

The findings supported the applicability of brain organoids as a model system for drug screening studies for neuroinflammatory brain diseases.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673435364251002112630
2025-10-08
2025-12-13
Loading full text...

Full text loading...

/deliver/fulltext/cmc/10.2174/0109298673435364251002112630/BMS-CMC-2025-681.html?itemId=/content/journals/cmc/10.2174/0109298673435364251002112630&mimeType=html&fmt=ahah

References

  1. Monteleone G. Moscardelli A. Colella A. Marafini I. Salvatori S. Immune-mediated inflammatory diseases: Common and different pathogenic and clinical features. Autoimmun. Rev. 2023 22 10 103410 10.1016/j.autrev.2023.103410 37597601
    [Google Scholar]
  2. Mortada I. Farah R. Nabha S. Ojcius D.M. Fares Y. Almawi W.Y. Sadier N.S. Immunotherapies for neurodegenerative diseases. Front. Neurol. 2021 12 654739 10.3389/fneur.2021.654739 34163421
    [Google Scholar]
  3. Peterson L. Fujinami R. Inflammation, demyelination, neurodegeneration and neuroprotection in the pathogenesis of multiple sclerosis. J. Neuroimmunol. 2007 184 1-2 37 44 10.1016/j.jneuroim.2006.11.015 17196667
    [Google Scholar]
  4. Portaccio E. Amato M.P. Cognitive impairment in multiple sclerosis: An update on assessment and management. NeuroSci 2022 3 4 667 676 10.3390/neurosci3040048 39483763
    [Google Scholar]
  5. Salmanzadeh H. Halliwell R.F. Human stem cell-derived neural organoids for the discovery of antiseizure agent. Receptors 2025 4 3 12 10.3390/receptors4030012
    [Google Scholar]
  6. Robertson D. Moreo N. Disease-modifying therapies in multiple sclerosis: Overview and treatment considerations. Fed. Pract. 2016 33 6 28 34 30766181
    [Google Scholar]
  7. Finkelsztejn A. Multiple sclerosis: overview of disease- modifying agents. Perspect. Medicin. Chem. 2014 6 PMC.S13213 10.4137/PMC.S13213 25336899
    [Google Scholar]
  8. Xu Z. Lu S. Liu X. Tang L. Liu Z. Cui J. Wang W. Lu W. Huang J. Drug repurposing of ilepcimide that ameliorates experimental autoimmune encephalomyelitis via restricting inflammatory response and oxidative stress. Toxicol. Appl. Pharmacol. 2023 458 116328 10.1016/j.taap.2022.116328 36455640
    [Google Scholar]
  9. Asadi P. Khodarahmi G. Rafiee A. Aliomrani M. Hassanzadeh F. Design, Synthesis, Bioactivity Analyses, and Molecular Docking Study of Triazine-Tyrosine Based Derivatives as Drugs like Fingolimod for Treatment of Multiple Sclerosis. Polycycl. Aromat. Compd. 2024 44 4 2292 2311 10.1080/10406638.2023.2215375
    [Google Scholar]
  10. Sisignano M. Gribbon P. Geisslinger G. Drug Repurposing to Target Neuroinflammation and Sensory Neuron-Dependent Pain. Drugs 2022 82 4 357 373 10.1007/s40265‑022‑01689‑0 35254645
    [Google Scholar]
  11. Stepanovska Tanturovska B. Zivkovic A. Imeri F. Homann T. Kleuser B. Stark H. Huwiler A. ST-2191, an anellated bismorpholino derivative of oxy-fingolimod, shows selective S1P1 agonist and functional antagonist potency in vitro and in vivo. Molecules 2021 26 17 5134 10.3390/molecules26175134
    [Google Scholar]
  12. Yousaf M. Chang D. Liu Y. Liu T. Zhou X. Neuroprotection of Cannabidiol, its synthetic derivatives and combination preparations against microglia-mediated neuroinflammation in neurological disorders. Molecules 2022 27 15 4961 10.3390/molecules27154961
    [Google Scholar]
  13. Imeri F. Blanchard O. Jenni A. Schwalm S. Wünsche C. Zivkovic A. Stark H. Pfeilschifter J. Huwiler A. FTY720 and two novel butterfly derivatives exert a general anti-inflammatory potential by reducing immune cell adhesion to endothelial cells through activation of S1P3 and phosphoinositide 3-kinase. Naunyn Schmiedebergs Arch. Pharmacol. 2015 388 12 1283 1292 10.1007/s00210‑015‑1159‑5 26267293
    [Google Scholar]
  14. García-Delgado A.B. Campos-Cuerva R. Rosell-Valle C. Martin-López M. Casado C. Ferrari D. Márquez-Rivas J. Sánchez-Pernaute R. Fernández-Muñoz B. Brain organoids to evaluate cellular therapies. Animals 2022 12 22 3150 10.3390/ani12223150 36428378
    [Google Scholar]
  15. Kanupriya K. Pal Verma S. Sharma V. Mishra I. Mishra R. Advances in human brain organoids: Methodological Innovations and future directions for drug discovery. Curr. Drug Res. Rev. 2025 17 3 360 374 10.2174/0125899775369286250206050006 39976096
    [Google Scholar]
  16. Jensen C. Teng Y. Is it time to start transitioning from 2D to 3D cell culture? Front. Mol. Biosci. 2020 7 33 10.3389/fmolb.2020.00033 32211418
    [Google Scholar]
  17. Kelava I. Lancaster M.A. Dishing out mini-brains: Current progress and future prospects in brain organoid research. Dev. Biol. 2016 420 2 199 209 10.1016/j.ydbio.2016.06.037 27402594
    [Google Scholar]
  18. Madill M. Fitzgerald D. O’Connell K.E. Dev K.K. Shen S. FitzGerald U. In vitro and ex vivo models of multiple sclerosis. Drug Discov. Today 2016 21 9 1504 1511 10.1016/j.drudis.2016.05.018 27265771
    [Google Scholar]
  19. Pașca S.P. Arlotta P. Bateup H.S. Camp J.G. Cappello S. Gage F.H. Knoblich J.A. Kriegstein A.R. Lancaster M.A. Ming G.L. Muotri A.R. Park I.H. Reiner O. Song H. Studer L. Temple S. Testa G. Treutlein B. Vaccarino F.M. A nomenclature consensus for nervous system organoids and assembloids. Nature 2022 609 7929 907 910 10.1038/s41586‑022‑05219‑6 36171373
    [Google Scholar]
  20. Venkataraman L. Fair S.R. McElroy C.A. Hester M.E. Fu H. Modeling neurodegenerative diseases with cerebral organoids and other three-dimensional culture systems: Focus on Alzheimer’s disease. Stem Cell Rev. Rep. 2022 18 2 696 717 10.1007/s12015‑020‑10068‑9 33180261
    [Google Scholar]
  21. Dedoni S. Scherma M. Camoglio C. Siddi C. Dazzi L. Puliga R. Frau J. Cocco E. Fadda P. An overall view of the most common experimental models for multiple sclerosis. Neurobiol. Dis. 2023 184 106230 10.1016/j.nbd.2023.106230 37453561
    [Google Scholar]
  22. Li L. Knutsdottir H. Hui K. Weiss M.J. He J. Philosophe B. Cameron A.M. Wolfgang C.L. Pawlik T.M. Ghiaur G. Ewald A.J. Mezey E. Bader J.S. Selaru F.M. Human primary liver cancer organoids reveal intratumor and interpatient drug response heterogeneity. JCI Insight 2019 4 2 e121490 10.1172/jci.insight.121490 30674722
    [Google Scholar]
  23. Tang X.Y. Wu S. Wang D. Chu C. Hong Y. Tao M. Hu H. Xu M. Guo X. Liu Y. Human organoids in basic research and clinical applications. Signal Transduct. Target. Ther. 2022 7 1 168 10.1038/s41392‑022‑01024‑9 35610212
    [Google Scholar]
  24. Zhou T. Tan L. Cederquist G.Y. Fan Y. Hartley B.J. Mukherjee S. Tomishima M. Brennand K.J. Zhang Q. Schwartz R.E. Evans T. Studer L. Chen S. High-content screening in hpsc-neural progenitors identifies drug candidates that inhibit zika virus infection in fetal-like organoids and adult brain. Cell Stem Cell 2017 21 2 274 283.e5 10.1016/j.stem.2017.06.017 28736217
    [Google Scholar]
  25. Zhou Z. Cong L. Cong X. Patient-derived organoids in precision medicine: Drug screening, organoid-on-a-chip and living organoid biobank. Front. Oncol. 2021 11 762184 10.3389/fonc.2021.762184 35036354
    [Google Scholar]
  26. Paul M.K. Organoid Technology: Disease Modelling, Drug Discovery, and Personalized Medicine. Bentham Science Publishers 2025 10.2174/97898152386931250101
    [Google Scholar]
  27. Gao C. Zhou J-Q. Zeng L-H. Li C-T. He D-H. Zhao H-D. Xu Y-N. Jin Z-T. Brain organoids are new tool for drug screening of neurological diseases. Neural Regen. Res. 2023 0 0 0 10.4103/1673‑5374.367983 36926704
    [Google Scholar]
  28. Chun J. Hartung H.P. Mechanism of action of oral fingolimod (FTY720) in multiple sclerosis. Clin. Neuropharmacol. 2010 33 2 91 101 10.1097/WNF.0b013e3181cbf825 20061941
    [Google Scholar]
  29. Kappos L. Radue E.W. O’Connor P. Polman C. Hohlfeld R. Calabresi P. Selmaj K. Agoropoulou C. Leyk M. Zhang-Auberson L. Burtin P. Group F.S. FREEDOMS Study Group A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N. Engl. J. Med. 2010 362 5 387 401 10.1056/NEJMoa0909494 20089952
    [Google Scholar]
  30. Brinkmann V. Davis M.D. Heise C.E. Albert R. Cottens S. Hof R. Bruns C. Prieschl E. Baumruker T. Hiestand P. Foster C.A. Zollinger M. Lynch K.R. The immune modulator FTY720 targets sphingosine 1-phosphate receptors. J. Biol. Chem. 2002 277 24 21453 21457 10.1074/jbc.C200176200 11967257
    [Google Scholar]
  31. Chun J. Giovannoni G. Hunter S.F. Sphingosine 1-phosphate Receptor Modulator Therapy for Multiple Sclerosis: Differential Downstream Receptor Signalling and Clinical Profile Effects. Drugs 2021 81 2 207 231 10.1007/s40265‑020‑01431‑8 33289881
    [Google Scholar]
  32. Paudel Y.N. Angelopoulou E. Piperi C. Gnatkovsky V. Othman I. Shaikh M.F. From the Molecular Mechanism to Pre-clinical Results: Anti-epileptic Effects of Fingolimod. Curr. Neuropharmacol. 2020 18 11 1126 1137 10.2174/1570159X18666200420125017 32310049
    [Google Scholar]
  33. Rüger K. Ottenlinger F. Schröder M. Živković A. Stark H. Pfeilschifter J.M. Radeke H.H. Modulation of IL-33/ST2-TIR and TLR signalling pathway by fingolimod and analogues in immune cells. Scand. J. Immunol. 2014 80 6 398 407 10.1111/sji.12238 25207757
    [Google Scholar]
  34. Imeri F. Stepanovska Tanturovska B. Zivkovic A. Enzmann G. Schwalm S. Pfeilschifter J. Homann T. Kleuser B. Engelhardt B. Stark H. Huwiler A. Novel compounds with dual S1P receptor agonist and histamine H3 receptor antagonist activities act protective in a mouse model of multiple sclerosis. Neuropharmacology 2021 186 108464 10.1016/j.neuropharm.2021.108464 33460688
    [Google Scholar]
  35. Stark H.Z. Novel heterocyclic compounds as modulators of sphingolipid signaling and uses thereof. WO patent 2012131096A1 2012
  36. Stepanovska B. Zivkovic A. Enzmann G. Tietz S. Homann T. Kleuser B. Engelhardt B. Stark H. Huwiler A. Morpholino Analogues of Fingolimod as Novel and Selective S1P1 Ligands with In Vivo Efficacy in a Mouse Model of Experimental Antigen-Induced Encephalomyelitis. Int. J. Mol. Sci. 2020 21 18 6463 10.3390/ijms21186463 32899717
    [Google Scholar]
  37. Lancaster M.A. Knoblich J.A. Generation of cerebral organoids from human pluripotent stem cells. Nat. Protoc. 2014 9 10 2329 2340 10.1038/nprot.2014.158 25188634
    [Google Scholar]
  38. Madhavan M. Nevin Z.S. Shick H.E. Garrison E. Clarkson-Paredes C. Karl M. Clayton B.L.L. Factor D.C. Allan K.C. Barbar L. Jain T. Douvaras P. Fossati V. Miller R.H. Tesar P.J. Induction of myelinating oligodendrocytes in human cortical spheroids. Nat. Methods 2018 15 9 700 706 10.1038/s41592‑018‑0081‑4 30046099
    [Google Scholar]
  39. Celik-Turgut G. Olmez N. Koc T. Ozgun-Acar O. Semiz A. Dodurga Y. Lale Satiroglu-Tufan N. Sen A. Role of AHR, NF-kB and CYP1A1 crosstalk with the X protein of Hepatitis B virus in hepatocellular carcinoma cells. Gene 2023 853 147099 10.1016/j.gene.2022.147099 36476661
    [Google Scholar]
  40. Dominijanni A.J. Devarasetty M. Forsythe S.D. Votanopoulos K.I. Soker S. Cell viability assays in three-dimensional hydrogels: A comparative study of accuracy. Tissue Eng. Part C Methods 2021 27 7 401 410 10.1089/ten.tec.2021.0060 34082602
    [Google Scholar]
  41. Kleijn A. Kloezeman J.J. Balvers R.K. Kaaij M. Dirven C.M.F. Leenstra S. Lamfers M.L.M. A systematic comparison identifies an ATP-based viability assay as most suitable read-out for drug screening in glioma stem-like cells. Stem Cells Int. 2016 2016 1 5623235 10.1155/2016/5623235 27274737
    [Google Scholar]
  42. Smabers L.P. Wensink E. Verissimo C.S. Koedoot E. Pitsa K.C. Huismans M.A. Higuera Barón C. Doorn M. Valkenburg-van Iersel L.B. Cirkel G.A. Brousali A. Overmeer R. Koopman M. Braat M.N. Penning de Vries B. Elias S.G. Vries R.G. Kranenburg O. Boj S.F. Roodhart J.M. Organoids as a biomarker for personalized treatment in metastatic colorectal cancer: Drug screen optimization and correlation with patient response. J. Exp. Clin. Cancer Res. 2024 43 1 61 10.1186/s13046‑024‑02980‑6 38414064
    [Google Scholar]
  43. Ozgun-Acar O. Celik-Turgut G. Gazioglu I. Kolak U. Ozbal S. Ergur B.U. Arslan S. Sen A. Topcu G. Capparis ovata treatment suppresses inflammatory cytokine expression and ameliorates experimental allergic encephalomyelitis model of multiple sclerosis in C57BL/6 mice. J. Neuroimmunol. 2016 298 106 116 10.1016/j.jneuroim.2016.07.010 27609283
    [Google Scholar]
  44. Flory P.J. Principles Of Polymer Chemistry. New York Cornell University Press 1953
    [Google Scholar]
  45. Huggins M.L. Solutions of long chain compounds. J. Chem. Phys. 1941 9 5 440 440 10.1063/1.1750930
    [Google Scholar]
  46. Lindvig T. Michelsen M.L. Kontogeorgis G.M. A Flory–Huggins model based on the Hansen solubility parameters. Fluid Phase Equilib. 2002 203 1-2 247 260 10.1016/S0378‑3812(02)00184‑X
    [Google Scholar]
  47. Zhang W. Gomez E.D. Milner S.T. Predicting flory-huggins χ from simulations. Phys. Rev. Lett. 2017 119 1 017801 10.1103/PhysRevLett.119.017801 28731776
    [Google Scholar]
  48. Qian D. Michaels T.C.T. Knowles T.P.J. Analytical solution to the flory–huggins model. J. Phys. Chem. Lett. 2022 13 33 7853 7860 10.1021/acs.jpclett.2c01986 35977086
    [Google Scholar]
  49. Cho Y. You J. Lee J.H. Natural Polymer-based hydrogel platforms for organoid and microphysiological systems: Mechanistic insights and translational perspectives. Polymers 2025 17 15 2109 10.3390/polym17152109 40808156
    [Google Scholar]
  50. Kim J.Y. Phase diagrams of ternary π-conjugated polymer solutions for organic photovoltaics. Polymers 2021 13 6 983 10.3390/polym13060983 33806946
    [Google Scholar]
  51. Hildebrand J.H. Scott R.L. The Solubility of Nonelectrolytes. Reinhold Publishing Corporation 1950
    [Google Scholar]
  52. Brinkmann V. Billich A. Baumruker T. Heining P. Schmouder R. Francis G. Aradhye S. Burtin P. Fingolimod (FTY720): discovery and development of an oral drug to treat multiple sclerosis. Nat. Rev. Drug Discov. 2010 9 11 883 897 10.1038/nrd3248 21031003
    [Google Scholar]
  53. PubChem compound summary for CID 107970, Fingolimod. 2025 Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Fingolimod
  54. Zaleski M.H. Omo-Lamai S. Nong J. Chase L.S. Myerson J.W. Glassman P.M. Lee F. Reyes-Esteves S. Wang Z. Patel M.N. Peshkova A.D. Komatsu H. Axelsen P.H. Muzykantov V.R. Marcos-Contreras O.A. Brenner J.S. Nanocarriers’ repartitioning of drugs between blood subcompartments as a mechanism of improving pharmacokinetics, safety, and efficacy. J. Control. Release 2024 374 425 440 10.1016/j.jconrel.2024.07.070 39103056
    [Google Scholar]
  55. Acar, B.; Aktas-Pepe, N.; Sen, A. Optimization of myelination on human cerebral organoids for studying multiple sclerosis (MS). The EuroBiotech J. 2021 5 s2 58 10.2478/ebtj‑2021‑0030
    [Google Scholar]
  56. Du C. Xie X. G protein-coupled receptors as therapeutic targets for multiple sclerosis. Cell Res. 2012 22 7 1108 1128 10.1038/cr.2012.87 22664908
    [Google Scholar]
  57. Hopperton K.E. Mohammad D. Trépanier M.O. Giuliano V. Bazinet R.P. Markers of microglia in post-mortem brain samples from patients with Alzheimer’s disease: A systematic review. Mol. Psychiatry 2018 23 2 177 198 10.1038/mp.2017.246 29230021
    [Google Scholar]
  58. von Boyen G.B.T. Steinkamp M. Reinshagen M. Schäfer K.H. Adler G. Kirsch J. Proinflammatory cytokines increase glial fibrillary acidic protein expression in enteric glia. Gut 2004 53 2 222 228 10.1136/gut.2003.012625 14724154
    [Google Scholar]
  59. Raasakka A. Kursula P. The myelin membrane-associated enzyme 2′,3′-cyclic nucleotide 3′-phosphodiesterase: on a highway to structure and function. Neurosci. Bull. 2014 30 6 956 966 10.1007/s12264‑013‑1437‑5 24807122
    [Google Scholar]
  60. Anilkumar S. Wright-Jin E. NF-κB as an inducible regulator of inflammation in the central nervous system. Cells 2024 13 6 485 10.3390/cells13060485 38534329
    [Google Scholar]
  61. Kummer K.K. Zeidler M. Kalpachidou T. Kress M. Role of IL-6 in the regulation of neuronal development, survival and function. Cytokine 2021 144 155582 10.1016/j.cyto.2021.155582 34058569
    [Google Scholar]
  62. Giovannoni F. Quintana F.J. The role of astrocytes in CNS inflammation. Trends Immunol. 2020 41 9 805 819 10.1016/j.it.2020.07.007 32800705
    [Google Scholar]
  63. Zhang Y. Wu K.M. Yang L. Dong Q. Yu J.T. Tauopathies: New perspectives and challenges. Mol. Neurodegener. 2022 17 1 28 10.1186/s13024‑022‑00533‑z 35392986
    [Google Scholar]
  64. Zečević N. Andjelković A. Matthieu J.M. Tosić M. Myelin basic protein immunoreactivity in the human embryonic CNS. Brain Res. Dev. Brain Res. 1998 105 1 97 108 10.1016/S0165‑3806(97)00176‑4
    [Google Scholar]
  65. Uçar Akyürek T. Orhan I.E. Şenol Deniz F.S. Eren G. Acar B. Sen A. Evaluation of Selected plant phenolics via beta-secretase-1 inhibition, molecular docking, and gene expression related to alzheimer’s disease. Pharmaceuticals 2024 17 11 1441 10.3390/ph17111441 39598353
    [Google Scholar]
  66. Hu X. Li S. Doycheva D.M. Huang L. Lenahan C. Liu R. Huang J. Xie S. Tang J. Zuo G. Zhang J.H. Rh-CSF1 attenuates neuroinflammation via the CSF1R/PLCG2/PKCε pathway in a rat model of neonatal HIE. J. Neuroinflammation 2020 17 1 182 10.1186/s12974‑020‑01862‑w 32522286
    [Google Scholar]
  67. Barca C. Foray C. Hermann S. Herrlinger U. Remory I. Laoui D. Schäfers M. Grauer O.M. Zinnhardt B. Jacobs A.H. The colony stimulating factor-1 receptor (CSF-1R)-mediated regulation of microglia/macrophages as a target for neurological disorders (glioma, stroke). Front. Immunol. 2021 12 787307 10.3389/fimmu.2021.787307 34950148
    [Google Scholar]
  68. Hwang D. Seyedsadr M.S. Ishikawa L.L.W. Boehm A. Sahin Z. Casella G. Jang S. Gonzalez M.V. Garifallou J.P. Hakonarson H. Zhang W. Xiao D. Rostami A. Zhang G.X. Ciric B. CSF-1 maintains pathogenic but not homeostatic myeloid cells in the central nervous system during autoimmune neuroinflammation. Proc. Natl. Acad. Sci. USA 2022 119 14 e2111804119 10.1073/pnas.2111804119 35353625
    [Google Scholar]
  69. Lin C.H. Yang S.Y. Horng H.E. Yang C.C. Chieh J.J. Chen H.H. Liu B.H. Chiu M.J. Plasma α-synuclein predicts cognitive decline in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 2017 88 10 818 824 10.1136/jnnp‑2016‑314857 28550072
    [Google Scholar]
  70. Fan T.S. Liu S.C.H. Wu R.M. Alpha-synuclein and cognitive decline in parkinson disease. Life (Basel) 2021 11 11 1239 10.3390/life11111239 34833115
    [Google Scholar]
  71. Godbout J.P. Johnson R.W. Age and neuroinflammation: A lifetime of psychoneuroimmune consequences. Immunol. Allergy Clin. North Am. 2009 29 2 321 337 10.1016/j.iac.2009.02.007 19389585
    [Google Scholar]
  72. Mekhora C. Lamport D.J. Spencer J.P.E. An overview of the relationship between inflammation and cognitive function in humans, molecular pathways and the impact of nutraceuticals. Neurochem. Int. 2024 181 105900 10.1016/j.neuint.2024.105900 39522696
    [Google Scholar]
  73. Sartori A.C. Vance D.E. Slater L.Z. Crowe M. The impact of inflammation on cognitive function in older adults: implications for healthcare practice and research. J. Neurosci. Nurs. 2012 44 4 206 217 10.1097/JNN.0b013e3182527690 22743812
    [Google Scholar]
  74. Ramsay R.R. Popovic-Nikolic M.R. Nikolic K. Uliassi E. Bolognesi M.L. A perspective on multi-target drug discovery and design for complex diseases. Clin. Transl. Med. 2018 7 1 e3 10.1186/s40169‑017‑0181‑2 29340951
    [Google Scholar]
  75. Shen D.D. Zhang Y.L. Li X. Bai Y.R. Xiong J.F. Seng D.J. Zhang Y.D. Liu H.M. Yuan S. Yang L. The mechanism of action and chemical synthesis of FDA newly approved drug molecules. Drug Dev. Res. 2024 85 6 e22260 10.1002/ddr.22260 39254376
    [Google Scholar]
  76. Saikia S. Bordoloi M. Sarmah R. Established and in- trial GPCR families in clinical trials: A review for target selection. Curr. Drug Targets 2019 20 5 522 539 10.2174/1389450120666181105152439 30394207
    [Google Scholar]
  77. Healy L. Antel J. Sphingosine-1-phosphate receptors in the central nervous and immune systems. Curr. Drug Targets 2016 17 16 1841 1850 10.2174/1389450116666151001112710 26424391
    [Google Scholar]
  78. Wyle Y. Lu N. Hepfer J. Sayal R. Martinez T. Wang A. The role of biophysical factors in organ development: Insights from current organoid models. Bioengineering 2024 11 6 619 10.3390/bioengineering11060619 38927855
    [Google Scholar]
  79. Giorgi C. Lombardozzi G. Ammannito F. Scenna M.S. Maceroni E. Quintiliani M. d’Angelo M. Cimini A. Castelli V. Brain organoids: A game-changer for drug testing. Pharmaceutics 2024 16 4 443 10.3390/pharmaceutics16040443 38675104
    [Google Scholar]
  80. Zivkovic A. Stark H. Efficient chromatography-free synthesis of the oxy-analogue of fingolimod. Tetrahedron Lett. 2010 51 29 3769 3771 10.1016/j.tetlet.2010.05.051
    [Google Scholar]
  81. Dash R.P. Srinivas N.R. Rais R. A review of bioanalytical quantitative methods for selected sphingosine 1-phosphate receptor modulators. Biomed. Chromatogr. 2018 32 1 e4109 10.1002/bmc.4109 28990207
    [Google Scholar]
  82. Ferreirós N. Labocha S. Schröder M. Radeke H.H. Geisslinger G. LC–MS/MS determination of FTY720 and FTY720-phosphate in murine intracellular compartments and human plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2012 887-888 122 127 10.1016/j.jchromb.2012.01.023 22341683
    [Google Scholar]
  83. Swain J. Borkar S.R. Aidhen I.S. Mishra A.K. A molecular level understanding of interaction between FTY720 (Fingolimod hydrochloride) and DMPC multilamellar vesicles. RSC Advances 2014 4 33 17347 17353 10.1039/C4RA02404D
    [Google Scholar]
  84. Fracasso, C.; Passoni, A.; Brambilla, L.; Mantegazza, R.; Rossi, S.; Gobbi, M.; Lucchetti, J. A Validated HPLC-MS/MS Method for Quantification of Fingolimod and Fingolimod-Phosphate in Human Plasma: Application to Patients with Relapsing–Remitting Multiple Sclerosis. Appl. Sci. 2022 12 12 6102 10.3390/app12126102
    [Google Scholar]
  85. Bascuñana P. Möhle L. Brackhan M. Pahnke J. Fingolimod as a treatment in neurologic disorders beyond multiple sclerosis. Drugs R D. 2020 20 3 197 207 10.1007/s40268‑020‑00316‑1 32696271
    [Google Scholar]
  86. López Couselo F. Saba J. Carniglia L. Durand D. Lasaga M. Caruso C. The essential role of astrocytes in neurodegeneration and neuroprotection. CNS Neurol. Disord. Drug Targets 2024 23 9 1101 1119 10.2174/0118715273269881231012062255 37916625
    [Google Scholar]
  87. Suda H. Hosokawa T. Ohno R. Hamaguchi K. Tsukada Y. 2′, 3′-Cyclic nucleotide 3′-phosphodiesterase activity in the cerebrospinal fluid of patients with demyelinating diseases. Neurochem. Pathol. 1984 2 2 85 102 10.1007/BF02834248 6085771
    [Google Scholar]
  88. Lear L. Najjar R. Feresin R. Danh J. Raspberry polyphenol extract decreases NF-kB and IL-6 expression in Lipopolysaccharide (LPS)-induced RAW 264.7. Curr. Develop. Nutr 2020 4 2 10.1093/cdn/nzaa045_055
    [Google Scholar]
  89. Azzolini F. Gilio L. Pavone L. Iezzi E. Dolcetti E. Bruno A. Buttari F. Musella A. Mandolesi G. Guadalupi L. Furlan R. Finardi A. Micillo T. Carbone F. Matarese G. Centonze D. Stampanoni Bassi M. Neuroinflammation is associated with GFAP and sTREM2 levels in multiple sclerosis. Biomolecules 2022 12 2 222 10.3390/biom12020222 35204724
    [Google Scholar]
  90. Arya A. Dhall M. Mittal V. Kaushik D. Mudgal P. Kumar T. Pandey M. Kadian R. Sharma P. Rani N. Singh T.G. Multiple sclerosis: Pathogenesis mechanism and biomarkers. Cent. Nerv. Syst. Agents Med. Chem. 2024 2 10.2174/0118715249307633240817160735 39234910
    [Google Scholar]
  91. Dani M. Brooks D.J. Edison P. Tau imaging in neurodegenerative diseases. Eur. J. Nucl. Med. Mol. Imaging 2016 43 6 1139 1150 10.1007/s00259‑015‑3231‑2 26572762
    [Google Scholar]
  92. Pyka-Fościak G. Jasek-Gajda E. Wójcik B. Lis G.J. Litwin J.A. Tau protein and β-amyloid associated with neurodegeneration in myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis. Biomedicines 2024 12 12 2770 10.3390/biomedicines12122770 39767677
    [Google Scholar]
  93. Han F. Perrin R.J. Wang Q. Wang Y. Perlmutter J.S. Morris J.C. Benzinger T.L.S. Xu J. Neuroinflammation and myelin status in Alzheimer’s disease, parkinson’s disease, and normal aging brains: A small sample study. Parkinsons Dis. 2019 2019 1 12 10.1155/2019/7975407 31354934
    [Google Scholar]
  94. Clark A.L. Haley A.P. Duarte A. O’Bryant S. Health and aging brain study – health disparities (HABS-HD) study team Fatty acid-binding protein 3 is a marker of neurodegeneration and white matter hyperintensity burden in Mexican American older adults. J. Alzheimers Dis. 2022 90 1 61 68 10.3233/JAD‑220524 36093702
    [Google Scholar]
  95. Hamilton H.L. Kinscherf N.A. Balmer G. Bresque M. Salamat S.M. Vargas M.R. Pehar M. FABP7 drives an inflammatory response in human astrocytes and is upregulated in Alzheimer’s disease. Geroscience 2023 46 2 1607 1625 10.1007/s11357‑023‑00916‑0 37688656
    [Google Scholar]
  96. Mantovani E. Martini A. Dinoto A. Zucchella C. Ferrari S. Mariotto S. Tinazzi M. Tamburin S. Biomarkers for cognitive impairment in alpha-synucleinopathies: An overview of systematic reviews and meta-analyses. NPJ Parkinsons Dis. 2024 10 1 211 10.1038/s41531‑024‑00823‑x 39488513
    [Google Scholar]
  97. Nandi S. Chauhan B. Tarannum H. Khede M.K. Multi-target polypharmacology of 4-aminoquinoline compounds against malaria, tuberculosis and cancer. Curr. Top. Med. Chem. 2023 23 5 403 414 10.2174/1568026623666230123142357 36694313
    [Google Scholar]
  98. Reddy A.S. Zhang S. Polypharmacology: Drug discovery for the future. Expert Rev. Clin. Pharmacol. 2013 6 1 41 47 10.1586/ecp.12.74 23272792
    [Google Scholar]
  99. Allen A.R. Eilertson K. Chakraborti A. Sharma S. Baure J. Habdank-Kolaczkowski J. Allen B. Rosi S. Raber J. Fike J.R. Radiation exposure prior to traumatic brain injury induces responses that differ as a function of animal age. Int. J. Radiat. Biol. 2014 90 3 214 223 10.3109/09553002.2014.859761 24164494
    [Google Scholar]
  100. Elweza A.E. Ezz M.A. Acosta T.J. Talukder A.K. Shimizu T. Hayakawa H. Shimada M. Imakawa K. Zaghloul A.H. Miyamoto A. A proinflammatory response of bovine endometrial epithelial cells to active sperm in vitro. Mol. Reprod. Dev. 2018 85 3 215 226 10.1002/mrd.22955 29337420
    [Google Scholar]
  101. Potter C.B. Davis M.T. Albadarin A.B. Walker G.M. Investigation of the dependence of the flory–huggins interaction parameter on temperature and composition in a drug–polymer system. Mol. Pharm. 2018 15 11 5327 5335 10.1021/acs.molpharmaceut.8b00797 30259745
    [Google Scholar]
  102. Klueppelberg J. Handge U.A. Thommes M. Winck J. Composition dependency of the flory–huggins interaction parameter in drug–polymer phase behavior. Pharmaceutics 2023 15 12 2650 10.3390/pharmaceutics15122650 38139992
    [Google Scholar]
  103. Tian Y. Booth J. Meehan E. Jones D.S. Li S. Andrews G.P. Construction of drug-polymer thermodynamic phase diagrams using Flory-Huggins interaction theory: Identifying the relevance of temperature and drug weight fraction to phase separation within solid dispersions. Mol. Pharm. 2013 10 1 236 248 10.1021/mp300386v 23110477
    [Google Scholar]
  104. Hu Z. Xu P. Ashour E.A. Repka M.A. Prediction and construction of drug-polymer binary system thermodynamic phase diagram in amorphous solid dispersions. (ASDs). AAPS PharmSciTech 2022 23 6 169 10.1208/s12249‑022‑02319‑4 35715519
    [Google Scholar]
  105. Donnelly C. Tian Y. Potter C. Jones D.S. Andrews G.P. Probing the effects of experimental conditions on the character of drug-polymer phase diagrams constructed using Flory-Huggins theory. Pharm. Res. 2015 32 1 167 179 10.1007/s11095‑014‑1453‑9 25074468
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673435364251002112630
Loading
/content/journals/cmc/10.2174/0109298673435364251002112630
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test