Skip to content
2000
image of Single-cell RNA Sequencing Analysis Reveals the Molecular Mechanisms of Neutrophil Dysfunction in Chronic Bone Infection

Abstract

Introduction

Neutrophils play a key role in host immune defense. At present, neutrophils in chronic bone infections exhibit significant heterogeneity but functional alterations that remain poorly understood.

Materials and Methods

A rat model of chronic bone infection induced by Methicillin-Resistant Staphylococcus Aureus (MRSA) was established. Bone marrow cells were analyzed using scRNA-seq with Gene Ontology (GO) and pathway enrichment analysis. Differentially Expressed Genes (DEGs) were identified to assess neutrophil dysfunction, validated by immunofluorescence staining and ROS quantification.

Results

MRSA-induced chronic bone infection was confirmed by Gram and H&E staining, which showed bacterial colonization and inflammation. Neutrophils from infected rats showed downregulated immune-related genes (, , ) and upregulated immunosuppressive factors (, Nfkbia, IL10ra). Enrichment analysis showed that immune responses and neutrophil functions were inhibited. Immunofluorescence showed neutrophil polarization towards N2 phenotype and reduced Reactive Oxygen Species (ROS) production in the infection group.

Discussion

This study established a rat model of MRSA-induced chronic bone infection and identified 7 neutrophil subsets scRNA-seq analysis, with the NeuP2ry10 subset showing the most significant changes. Neutrophils displayed decreased chemotaxis, phagocytosis, and ROS production, along with elevated anti-inflammatory gene expression, suggesting functional suppression and a shift toward an immunosuppressive state.

Conclusion

Chronic bone infection drives neutrophil polarization toward an N2 anti-inflammatory phenotype, reducing antimicrobial capacity and promoting infection persistence. Targeting neutrophil function may offer new therapeutic strategies for chronic bone infection.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673432965251027081909
2025-11-28
2026-01-05
Loading full text...

Full text loading...

References

  1. Koons G.L. Diba M. Mikos A.G. Materials design for bone-tissue engineering. Nat. Rev. Mater. 2020 5 8 584 603 10.1038/s41578‑020‑0204‑2
    [Google Scholar]
  2. Aboltins C.A. Berdal J.E. Casas F. Corona P.S. Cuellar D. Ferrari M.C. Hendershot E. Huang W. Kuo F.C. Malkani A. Reyes F. Rudelli S. Safir O. Seyler T. Tan T.L. Townsend R. Tuncay I. Turner D. Winkler H. Wouthuyzen-Bakker M. Yates A.J. Zahar A. Hip and knee section, prevention, antimicrobials (Systemic): Proceedings of international consensus on orthopedic infections. J. Arthroplasty 2019 34 2 S279 S288 10.1016/j.arth.2018.09.012 30348572
    [Google Scholar]
  3. Costerton J.W. Stewart P.S. Greenberg E.P. Bacterial biofilms: A common cause of persistent infections. Science 1999 284 5418 1318 1322 10.1126/science.284.5418.1318 10334980
    [Google Scholar]
  4. Arciola C.R. Campoccia D. Montanaro L. Implant infections: Adhesion, biofilm formation and immune evasion. Nat. Rev. Microbiol. 2018 16 7 397 409 10.1038/s41579‑018‑0019‑y 29720707
    [Google Scholar]
  5. Masters E.A. Trombetta R.P. de Mesy Bentley K.L. Boyce B.F. Gill A.L. Gill S.R. Nishitani K. Ishikawa M. Morita Y. Ito H. Bello-Irizarry S.N. Ninomiya M. Brodell J.D. Jr Lee C.C. Hao S.P. Oh I. Xie C. Awad H.A. Daiss J.L. Owen J.R. Kates S.L. Schwarz E.M. Muthukrishnan G. Evolving concepts in bone infection: redefining “biofilm”, “acute vs. chronic osteomyelitis”, “the immune proteome” and “local antibiotic therapy”. Bone Res. 2019 7 1 20 10.1038/s41413‑019‑0061‑z 31646012
    [Google Scholar]
  6. Masters E.A. Ricciardi B.F. Bentley K.L.M. Moriarty T.F. Schwarz E.M. Muthukrishnan G. Skeletal infections: microbial pathogenesis, immunity and clinical management. Nat. Rev. Microbiol. 2022 20 7 385 400 10.1038/s41579‑022‑00686‑0 35169289
    [Google Scholar]
  7. Costa B. Martínez-de-Tejada G. Gomes P.A.C. L Martins M.C. Costa F. Antimicrobial peptides in the battle against orthopedic implant-related infections: A review. Pharmaceutics 2021 13 11 1918 10.3390/pharmaceutics13111918 34834333
    [Google Scholar]
  8. Tsioumpekou M. Krijgsman D. Leusen J.H.W. Olofsen P.A. The role of cytokines in neutrophil development, tissue homing, function and plasticity in health and disease. Cells 2023 12 15 1981 10.3390/cells12151981 37566060
    [Google Scholar]
  9. Liu Y. Song R. Lu Z. Zhao L. Zhan X. Li Y. Cao X. The RNA m6A demethylase ALKBH5 drives emergency granulopoiesis and neutrophil mobilization by upregulating G-CSFR expression. Cell Mol. Immunol. 2023 21 1 6 18 10.1038/s41423‑023‑01115‑9 38114747
    [Google Scholar]
  10. Leliefeld P.H.C. Wessels C.M. Leenen L.P.H. Koenderman L. Pillay J. The role of neutrophils in immune dysfunction during severe inflammation. Crit. Care 2016 20 1 73 10.1186/s13054‑016‑1250‑4 27005275
    [Google Scholar]
  11. Burn G.L. Foti A. Marsman G. Patel D.F. Zychlinsky A. The Neutrophil. Immunity 2021 54 7 1377 1391 10.1016/j.immuni.2021.06.006 34260886
    [Google Scholar]
  12. Herro R. Grimes H.L. The diverse roles of neutrophils from protection to pathogenesis. Nat. Immunol. 2024 25 12 2209 2219 10.1038/s41590‑024‑02006‑5 39567761
    [Google Scholar]
  13. Shen X.F. Cao K. Jiang J. Guan W.X. Du J.F. Neutrophil dysregulation during sepsis: An overview and update. J. Cell. Mol. Med. 2017 21 9 1687 1697 10.1111/jcmm.13112 28244690
    [Google Scholar]
  14. Spaan A.N. van Strijp J.A.G. Torres V.J. Leukocidins: Staphylococcal bi-component pore-forming toxins find their receptors. Nat. Rev. Microbiol. 2017 15 7 435 447 10.1038/nrmicro.2017.27 28420883
    [Google Scholar]
  15. Zhu Z. Hu Z. Li S. Fang R. Ono H.K. Hu D.L. Molecular characteristics and pathogenicity of Staphylococcus aureus Exotoxins. Int. J. Mol. Sci. 2023 25 1 395 10.3390/ijms25010395 38203566
    [Google Scholar]
  16. Pivard M. Moreau K. Vandenesch F. Staphylococcus aureus Arsenal To conquer the lower respiratory tract. MSphere 2021 6 3 e00059-21 10.1128/mSphere.00059‑21 34011681
    [Google Scholar]
  17. Seebach E. Kubatzky K.F. Chronic implant-related bone infections—can immune modulation be a therapeutic strategy? Front. Immunol. 2019 10 1724 10.3389/fimmu.2019.01724 31396229
    [Google Scholar]
  18. Jia Z. Wang J. Li X. Yang Q. Han J. Repair effect of siRNA double silencing of the novel mechanically sensitive ion channels Piezo1 and TRPV4 on an osteoarthritis rat model. Curr. Mol. Pharmacol. 2024 17 e18761429317745 10.2174/0118761429317745241017114020 39660528
    [Google Scholar]
  19. Vergidis P. Schmidt-Malan S.M. Mandrekar J.N. Steckelberg J.M. Patel R. Comparative activities of vancomycin, tigecycline and rifampin in a rat model of methicillin-resistant Staphylococcus aureus osteomyelitis. J. Infect. 2015 70 6 609 615 10.1016/j.jinf.2014.12.016 25576292
    [Google Scholar]
  20. Harrasser N. Gorkotte J. Obermeier A. Feihl S. Straub M. Slotta-Huspenina J. von Eisenhart-Rothe R. Moser W. Gruner P. de Wild M. Gollwitzer H. Burgkart R. A new model of implant-related osteomyelitis in the metaphysis of rat tibiae. BMC Musculoskelet. Disord. 2016 17 1 152 10.1186/s12891‑016‑1005‑z 27060078
    [Google Scholar]
  21. DeMordaunt T. Rajkovic C.J. Tracz J.A. Perdomo-Pantoja A. Judy B.F. Hernandez V.N. Lin J. Lazzari J.L. Dikeman D.A. Archer N.K. Davis K.M. Gordon O. Witham T.F. A novel rodent model of chronic spinal implant-associated infection. Spine J. 2023 23 9 1389 1399 10.1016/j.spinee.2023.05.014 37247639
    [Google Scholar]
  22. Zulibiya A. Wen J. Yu H. Chen X. Xu L. Ma X. Zhang B. Single-Cell RNA sequencing reveals potential for endothelial-to-mesenchymal transition in tetralogy of fallot. Congenit. Heart Dis. 2023 18 6 611 625 10.32604/chd.2023.047689
    [Google Scholar]
  23. Shahrajabian M.H. Sun W. Survey on multi-omics, and multi-omics data analysis, integration and application. Curr. Pharm. Anal. 2023 19 4 267 281 10.2174/1573412919666230406100948
    [Google Scholar]
  24. Chen S. Zhou Y. Chen Y. Gu J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018 34 17 i884 i890 10.1093/bioinformatics/bty560 30423086
    [Google Scholar]
  25. Dobin A. Davis C.A. Schlesinger F. Drenkow J. Zaleski C. Jha S. Batut P. Chaisson M. Gingeras T.R. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013 29 1 15 21 10.1093/bioinformatics/bts635 23104886
    [Google Scholar]
  26. Hao Y. Hao S. Andersen-Nissen E. Mauck W.M. III Zheng S. Butler A. Lee M.J. Wilk A.J. Darby C. Zager M. Hoffman P. Stoeckius M. Papalexi E. Mimitou E.P. Jain J. Srivastava A. Stuart T. Fleming L.M. Yeung B. Rogers A.J. McElrath J.M. Blish C.A. Gottardo R. Smibert P. Satija R. Integrated analysis of multimodal single-cell data. Cell 2021 184 13 3573 3587.e29 10.1016/j.cell.2021.04.048 34062119
    [Google Scholar]
  27. Wang S. Xie C. Hu H. Yu P. Zhong H. Wang Y. Shan L. iTRAQ-based proteomic analysis unveils ncam1 as a novel regulator in doxorubicin-induced cardiotoxicity and dt-010-exerted cardioprotection. Curr. Pharm. Anal. 2025 20 9 966 977 10.2174/0115734129331758241022113026
    [Google Scholar]
  28. Song Z. Yu J. Wang M. Shen W. Wang C. Lu T. Shan G. Dong G. Wang Y. Zhao J. CHDTEPDB: Transcriptome expression profile database and interactive analysis platform for congenital heart disease. Congenit. Heart Dis. 2023 18 6 693 701 10.32604/chd.2024.048081
    [Google Scholar]
  29. Su Y. Qiu P. Cheng L. Zhang L. Peng W. Meng X. Catechin protects against lipopolysaccharide-induced depressive-like behaviour in mice by regulating neuronal and inflammatory genes. Curr. Gene Ther. 2024 24 4 292 306 10.2174/0115665232261045231215054305 38783529
    [Google Scholar]
  30. Efremova M. Vento-Tormo M. Teichmann S.A. Vento-Tormo R. CellPhoneDB: inferring cell–cell communication from combined expression of multi-subunit ligand–receptor complexes. Nat. Protoc. 2020 15 4 1484 1506 10.1038/s41596‑020‑0292‑x 32103204
    [Google Scholar]
  31. Yaari G. Vander Heiden J.A. Uduman M. Gadala-Maria D. Gupta N. Stern J.N.H. O’Connor K.C. Hafler D.A. Laserson U. Vigneault F. Kleinstein S.H. Models of somatic hypermutation targeting and substitution based on synonymous mutations from high-throughput immunoglobulin sequencing data. Front. Immunol. 2013 4 358 10.3389/fimmu.2013.00358 24298272
    [Google Scholar]
  32. Wang R. Liu P. Li F. Qiao H. Neuroprotective effect of dexmedetomidine pretreatment on sevoflurane- initiated neurotoxicity via the Mir-204-5p/SOX4 axis. Protein Pept. Lett. 2023 30 7 608 618 10.2174/0929866530666230530164913 37259215
    [Google Scholar]
  33. Laborel-Préneron E. Bianchi P. Boralevi F. Lehours P. Fraysse F. Morice-Picard F. Sugai M. Sato’o Y. Badiou C. Lina G. Schmitt A.M. Redoulès D. Casas C. Davrinche C. Effects of the Staphylococcus aureus and Staphylococcus epidermidis secretomes isolated from the skin microbiota of atopic children on CD4+ T Cell Activation. PLoS One 2015 10 10 e0141067 10.1371/journal.pone.0141067 26510097
    [Google Scholar]
  34. Yang B. Wang D. Yu S. Zhang C. Ai J. Yu X. Breaking CHIPS-Mediated immune evasion with tripterin to promote neutrophil chemotaxis against MRSA infection. Int. Immunopharmacol. 2024 129 111597 10.1016/j.intimp.2024.111597 38295543
    [Google Scholar]
  35. Chen R. Zhang X. Li B. Tonetti M.S. Yang Y. Li Y. Liu B. Qian S. Gu Y. Wang Q. Mao K. Cheng H. Lai H. Shi J. Progranulin-dependent repair function of regulatory T cells drives bone-fracture healing. J. Clin. Invest. 2025 135 2 e180679 10.1172/JCI180679 39509336
    [Google Scholar]
  36. Joshi S. Sharabi A. Targeting myeloid-derived suppressor cells to enhance natural killer cell-based immunotherapy. Pharmacol. Ther. 2022 235 108114 10.1016/j.pharmthera.2022.108114 35122833
    [Google Scholar]
  37. Goodridge H.S. Reyes C.N. Becker C.A. Katsumoto T.R. Ma J. Wolf A.J. Bose N. Chan A.S.H. Magee A.S. Danielson M.E. Weiss A. Vasilakos J.P. Underhill D.M. Activation of the innate immune receptor Dectin-1 upon formation of a ‘phagocytic synapse’. Nature 2011 472 7344 471 475 10.1038/nature10071 21525931
    [Google Scholar]
  38. Nguyen N.Z.N. Tran V.G. Lee S. Kim M. Kang S.W. Kim J. Kim H.J. Lee J.S. Cho H.R. Kwon B. CCR5-mediated recruitment of NK cells to the kidney is a critical step for host defense to systemic Candida albicans infection. Immune Netw. 2020 20 6 e49 10.4110/in.2020.20.e49 33425434
    [Google Scholar]
  39. Sawant K.V. Sepuru K.M. Lowry E. Penaranda B. Frevert C.W. Garofalo R.P. Rajarathnam K. Neutrophil recruitment by chemokines Cxcl1/KC and Cxcl2/MIP2: Role of Cxcr2 activation and glycosaminoglycan interactions. J. Leukoc. Biol. 2021 109 4 777 791 10.1002/JLB.3A0820‑207R 32881070
    [Google Scholar]
  40. Xiang Y. Dai J. Li Y. You Z. Zhang J. Huang X. Nie S. Chen Y. Xu L. Liu F. Jiang J. Xu J. ROS-activated CXCR2+ neutrophils recruited by CXCL1 delay denervated skeletal muscle atrophy and undergo P53-mediated apoptosis. Exp. Mol. Med. 2022 54 7 1011 1023 10.1038/s12276‑022‑00805‑0 35864308
    [Google Scholar]
  41. Stock A.T. Hansen J.A. Sleeman M.A. McKenzie B.S. Wicks I.P. GM-CSF primes cardiac inflammation in a mouse model of Kawasaki disease. J. Exp. Med. 2016 213 10 1983 1998 10.1084/jem.20151853 27595596
    [Google Scholar]
  42. Armitage J.O. Emerging applications of recombinant human granulocyte-macrophage colony-stimulating factor. Blood 1998 92 12 4491 4508 10.1182/blood.V92.12.4491 9845514
    [Google Scholar]
  43. Farzan S.F. Karagas M.R. Jiang J. Wu F. Liu M. Newman J.D. Jasmine F. Kibriya M.G. Paul-Brutus R. Parvez F. Argos M. Bryan M.S. Eunus M. Ahmed A. Islam T. Rakibuz-Zaman M. Hasan R. Sarwar G. Slavkovich V. Graziano J. Ahsan H. Chen Y. Gene–arsenic interaction in longitudinal changes of blood pressure: Findings from the health effects of arsenic longitudinal study (HEALS) in Bangladesh. Toxicol. Appl. Pharmacol. 2015 288 1 95 105 10.1016/j.taap.2015.07.017 26220686
    [Google Scholar]
  44. Thomas D.C. The phagocyte respiratory burst: Historical perspectives and recent advances. Immunol. Lett. 2017 192 88 96 10.1016/j.imlet.2017.08.016 28864335
    [Google Scholar]
  45. Herb M. Schramm M. Functions of ROS in macrophages and antimicrobial immunity. Antioxidants 2021 10 2 313 10.3390/antiox10020313 33669824
    [Google Scholar]
  46. Cai X. Gao C. Song H. Yang N. Fu Q. Tan F. Li C. Characterization, expression profiling and functional characterization of cathepsin Z (CTSZ) in turbot (Scophthalmus maximus L.). Fish Shellfish Immunol. 2019 84 599 608 10.1016/j.fsi.2018.10.046 30359754
    [Google Scholar]
  47. Liu X. Deng Y. Huang Y. Ye J. Xie S. He Q. Chen Y. Lin Y. Liang R. Wei J. Li Y. Zhang J. Nasopharyngeal carcinoma progression: Accumulating genomic instability and persistent epstein–barr virus infection. Curr. Oncol. 2022 29 9 6035 6052 10.3390/curroncol29090475 36135044
    [Google Scholar]
  48. Sim J.K. Heo Y.J. Shin J.H. Kim S.S. Seo S.R. Gedunin Mitigates Cutibacterium acnes-induced skin inflammation by inhibiting the nf-κb pathway. Pharmaceuticals 2025 18 1 71 10.3390/ph18010071 39861132
    [Google Scholar]
  49. Rojas J.M. Avia M. Martín V. Sevilla N. IL-10: A multifunctional cytokine in viral infections. J. Immunol. Res. 2017 2017 1 14 10.1155/2017/6104054 28316998
    [Google Scholar]
  50. Cavalcante L.B. Tanaka M.H. Pires J.R. Henrique Apponi L. Aparecida Giro E.M. Roberto Valentini S. Palomari Spolidório D.M. Capela M.V. Rossa C. Jr Scarel-Caminaga R.M. Expression of the interleukin-10 signaling pathway genes in individuals with Down syndrome and periodontitis. J. Periodontol. 2012 83 7 926 935 10.1902/jop.2011.110056 22050548
    [Google Scholar]
  51. Brooks D.G. Trifilo M.J. Edelmann K.H. Teyton L. McGavern D.B. Oldstone M.B.A. Interleukin-10 determines viral clearance or persistence in vivo. Nat. Med. 2006 12 11 1301 1309 10.1038/nm1492 17041596
    [Google Scholar]
  52. Garcia-Vilanova A. Chan J. Torrelles J.B. Underestimated manipulative roles of Mycobacterium tuberculosis cell envelope glycolipids during infection. Front. Immunol. 2019 10 2909 10.3389/fimmu.2019.02909 31921168
    [Google Scholar]
  53. Hajam I.A. Liu G.Y. Linking S. aureus immune evasion mechanisms to staphylococcal vaccine failures. Antibiotics 2024 13 5 410 10.3390/antibiotics13050410 38786139
    [Google Scholar]
  54. Jung K.J. Lee G.W. Park C.H. Lee T.J. Kim J.Y. Sung E.G. Kim S.Y. Jang B.I. Song I.H. Mesenchymal stem cells decrease oxidative stress in the bowels of interleukin-10 knockout mice. Gut Liver 2020 14 1 100 107 10.5009/gnl18438 31158947
    [Google Scholar]
  55. Paschalidi P. Gkouveris I. Soundia A. Kalfarentzos E. Vardas E. Georgaki M. Kostakis G. Erovic B.M. Tetradis S. Perisanidis C. Nikitakis N.G. The role of M1 and M2 macrophage polarization in progression of medication-related osteonecrosis of the jaw. Clin. Oral Investig. 2021 25 5 2845 2857 10.1007/s00784‑020‑03602‑z 32964311
    [Google Scholar]
  56. Li Z. Huang B. Yi W. Wang F. Wei S. Yan H. Qin P. Zou D. Wei R. Chen N. Identification of Potential Early Diagnostic Biomarkers of Sepsis. J. Inflamm. Res. 2021 14 621 631 10.2147/JIR.S298604 33688234
    [Google Scholar]
  57. Habibian J.S. Jefic M. Bagchi R.A. Lane R.H. McKnight R.A. McKinsey T.A. Morrison R.F. Ferguson B.S. DUSP5 functions as a feedback regulator of TNFα-induced ERK1/2 dephosphorylation and inflammatory gene expression in adipocytes. Sci. Rep. 2017 7 1 12879 10.1038/s41598‑017‑12861‑y 29018280
    [Google Scholar]
  58. Chen Y. Li S. Guo F. Tsc22d3 promotes morphine tolerance in mice through the GPX4 ferroptosis pathway. Aging (Albany NY) 2024 16 11 9859 9875 10.18632/aging.205903 38843390
    [Google Scholar]
  59. Li Y. Huang H. Zhu Z. Chen S. Liang Y. Shu L. TSC22D3 as an immune-related prognostic biomarker for acute myeloid leukemia. iScience 2023 26 8 107451 10.1016/j.isci.2023.107451 37575189
    [Google Scholar]
  60. Szczerba B.M. Castro-Giner F. Vetter M. Krol I. Gkountela S. Landin J. Scheidmann M.C. Donato C. Scherrer R. Singer J. Beisel C. Kurzeder C. Heinzelmann-Schwarz V. Rochlitz C. Weber W.P. Beerenwinkel N. Aceto N. Neutrophils escort circulating tumour cells to enable cell cycle progression. Nature 2019 566 7745 553 557 10.1038/s41586‑019‑0915‑y 30728496
    [Google Scholar]
  61. Wigerblad G. Kaplan M.J. Neutrophil extracellular traps in systemic autoimmune and autoinflammatory diseases. Nat. Rev. Immunol. 2023 23 5 274 288 10.1038/s41577‑022‑00787‑0 36257987
    [Google Scholar]
  62. Thurlow L.R. Hanke M.L. Fritz T. Angle A. Aldrich A. Williams S.H. Engebretsen I.L. Bayles K.W. Horswill A.R. Kielian T. Staphylococcus aureus biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo. J. Immunol. 2011 186 11 6585 6596 10.4049/jimmunol.1002794 21525381
    [Google Scholar]
  63. Shapouri-Moghaddam A. Mohammadian S. Vazini H. Taghadosi M. Esmaeili S.A. Mardani F. Seifi B. Mohammadi A. Afshari J.T. Sahebkar A. Macrophage plasticity, polarization, and function in health and disease. J. Cell. Physiol. 2018 233 9 6425 6440 10.1002/jcp.26429 29319160
    [Google Scholar]
  64. Zhang F. Xia Y. Su J. Quan F. Zhou H. Li Q. Feng Q. Lin C. Wang D. Jiang Z. Neutrophil diversity and function in health and disease. Signal Transduct. Target. Ther. 2024 9 1 343 10.1038/s41392‑024‑02049‑y 39638788
    [Google Scholar]
  65. Tomlinson K.L. Riquelme S.A. Baskota S.U. Drikic M. Monk I.R. Stinear T.P. Lewis I.A. Prince A.S. Staphylococcus aureus stimulates neutrophil itaconate production that suppresses the oxidative burst. Cell Rep. 2023 42 2 112064 10.1016/j.celrep.2023.112064 36724077
    [Google Scholar]
  66. Assis-Mendonça G.R. Fattori A. Rocha R.M. Lourenço G.J. Delamain M.T. Nonogaki S. de Lima V.C.C. Colleoni G.W.B. de Souza C.A. Soares F.A. Lima C.S.P. Vassallo J. Single nucleotide variants in immune-response genes and the tumor microenvironment composition predict progression of mantle cell lymphoma. BMC Cancer 2021 21 1 209 10.1186/s12885‑021‑07891‑9 33648463
    [Google Scholar]
  67. Abdulfattah S.Y. Samawi F.T. Estimating the role of single-nucleotide polymorphism (rs1800629)-308 G/A of TNF-alpha gene as genetic marker associated with angina pectoris in a sample of Iraqi patients. J. Genet. Eng. Biotechnol. 2023 21 1 2 10.1186/s43141‑022‑00454‑w 36622512
    [Google Scholar]
  68. Giri P.S. Begum R. Dwivedi M. Meta-analysis for association of TNFA-308(G > A) SNP with vitiligo susceptibility. Gene 2022 809 146027 10.1016/j.gene.2021.146027 34673212
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673432965251027081909
Loading
/content/journals/cmc/10.2174/0109298673432965251027081909
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test