Skip to content
2000
image of LncRNA HYMAI Promotes Endothelial Cell Autophagy via miR-19a-3p/ ATG14 to Attenuate the Progression of Coronary Atherosclerotic Disease

Abstract

Background

Coronary atherosclerotic disease (CAD), clinically manifesting as progressive coronary atherosclerosis (As), involves endothelial cell (EC) dysfunction. HYMAI may contribute to atherogenesis by acting on ECs, but its regulation of endothelial injury and role in As pathogenesis remain unclear.

Methods

HYMAI expression was assessed PCR array in blood samples from healthy individuals, patients with premature coronary atherosclerotic disease (PCAD), and patients with mature coronary atherosclerotic disease (MCAD) (each group consisting of 4 males and 2 females). Using male ApoE−/− and LDLR−/− mice fed with a high-fat diet (HFD) to model As, we evaluated the effects of endothelial-specific HYMAI overexpression on aortic lesions. Autophagy and apoptosis were analyzed in ox-LDL-treated human coronary artery endothelial cells (HCAECs).

Results

HYMAI levels increased sequentially in healthy individuals, PCAD, and MCAD patients. In HFD-fed ApoE−/− and LDLR−/− mice, aortic atherosclerosis progressed with age, while HYMAI expression in aortic tissue declined. HYMAI overexpression in ECs promoted autophagy and attenuated atherosclerosis. , ox-LDL suppressed HYMAI, triggering autophagic inhibition and apoptotic activation in HCAECs. HYMAI overexpression rescued ox-LDL-impaired autophagy and suppressed apoptosis through the miR-19a-3p/ATG14 pathway. MiR-19a-3p overexpression reversed autophagic rescue and promoted apoptosis by repressing ATG14.

Discussion

HYMAI upregulation counteracts ox-LDL-treated endothelial autophagic inhibition the miR-19a-3p/ATG14 pathway, rescuing apoptosis and attenuating As in both and settings.

Conclusion

Our results demonstrated that HYMAI attenuated As progression in As mice and ox-LDL-treated HCAECs by enhancing endothelial autophagy through the miR-19a-3p/ATG14 axis. These findings establish HYMAI as a novel regulatory mechanism and provide a potential druggable target for As and CAD.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673428431250917095939
2025-10-02
2025-11-04
Loading full text...

Full text loading...

References

  1. Byrne R.A. Rossello X. Coughlan J.J. Barbato E. Berry C. Chieffo A. Claeys M.J. Dan G.A. Dweck M.R. Galbraith M. Gilard M. Hinterbuchner L. Jankowska E.A. Jüni P. Kimura T. Kunadian V. Leosdottir M. Lorusso R. Pedretti R.F.E. Rigopoulos A.G. Rubini Gimenez M. Thiele H. Vranckx P. Wassmann S. Wenger N.K. Ibanez B. Halvorsen S. James S. Abdelhamid M. Aboyans V. Marsan N.A. Antoniou S. Asteggiano R. Bäck M. Capodanno D. Casado-Arroyo R. Cassese S. Čelutkienė J. Cikes M. Collet J-P. Ducrocq G. Falk V. Fauchier L. Geisler T. Gorog D.A. Holmvang L. Jaarsma T. Jones H.W. Køber L. Koskinas K.C. Kotecha D. Krychtiuk K.A. Landmesser U. Lazaros G. Lewis B.S. Lindahl B. Linhart A. Løchen M-L. Mamas M.A. McEvoy J.W. Mihaylova B. Mindham R. Mueller C. Neubeck L. Niebauer J. Nielsen J.C. Niessner A. Paradies V. Pasquet A.A. Petersen S.E. Prescott E. Rakisheva A. Rocca B. Rosano G.M.C. Sade L.E. Schiele F. Siller-Matula J.M. Sticherling C. Storey R.F. Thielmann M. Vrints C. Windecker S. Wiseth R. Witkowski A. El Amine Bouzid M. Hayrapetyan H. Metzler B. Lancellotti P. Bajrić M. Karamfiloff K. Mitsis A. Ostadal P. Sørensen R. Elwasify T. Marandi T. Ryödi E. Collet J-P. Chukhrukidze A. Mehilli J. Davlouros P. Becker D. Guðmundsdóttir I.J. Crowley J. Abramowitz Y. Indolfi C. Sakhov O. Elezi S. Beishenkulov M. Erglis A. Moussallem N. Benlamin H. Dobilienė O. Degrell P. Balbi M.M. Grosu A. Lakhal Z. ten Berg J. Pejkov H. Angel K. Witkowski A. De Sousa Almeida M. Chioncel O. Bertelli L. Stojkovic S. Studenčan M. Radšel P. Ferreiro J.L. Ravn-Fischer A. Räber L. Marjeh M.Y.B. Hassine M. Yildirir A. Parkhomenko A. Banning A.P. Prescott E. James S. Arbelo E. Baigent C. Borger M.A. Buccheri S. Ibanez B. Køber L. Koskinas K.C. McEvoy J.W. Mihaylova B. Mindham R. Neubeck L. Nielsen J.C. Pasquet A.A. Rakisheva A. Rocca B. Rossello X. Vaartjes I. Vrints C. Witkowski A. Zeppenfeld K. 2023 ESC Guidelines for the management of acute coronary syndromes. Eur. Heart J. 2023 44 38 3720 3826 10.1093/eurheartj/ehad191 37622654
    [Google Scholar]
  2. Moss A. Daghem M. Tzolos E. Meah M.N. Wang K.L. Bularga A. Adamson P.D. Kwiecinski J. Fletcher A. Dawson D. Arumugam P. Sabharwal N. Greenwood J.P. Townend J.N. Calvert P.A. Rudd J.H.F. Berman D. Verjans J. Slomka P. Dey D. Forsyth L. Murdoch L. Lee R.J. Lewis S. Mills N.L. van Beek E.J.R. Williams M.C. Dweck M.R. Newby D.E. Briola A. Armstrong R. Macdonald A. Scott G. Milne G. Milne L. Battison C. Wilkins M.R. Storey R.F. Razavi R. Wallberg M. Mycock R. Coronary atherosclerotic plaque activity and future coronary events. JAMA Cardiol. 2023 8 8 755 764 10.1001/jamacardio.2023.1729 37379010
    [Google Scholar]
  3. Arora S. Stouffer G.A. Kucharska-Newton A.M. Qamar A. Vaduganathan M. Pandey A. Porterfield D. Blankstein R. Rosamond W.D. Bhatt D.L. Caughey M.C. Twenty year trends and sex differences in young adults hospitalized with acute myocardial infarction. Circulation 2019 139 8 1047 1056 10.1161/CIRCULATIONAHA.118.037137 30586725
    [Google Scholar]
  4. Le A. Peng H. Golinsky D. Di Scipio M. Lali R. Paré G. What causes premature coronary artery disease? Curr. Atheroscler. Rep. 2024 26 6 189 203 10.1007/s11883‑024‑01200‑y 38573470
    [Google Scholar]
  5. Schnitzler G.R. Kang H. Fang S. Angom R.S. Lee-Kim V.S. Ma X.R. Zhou R. Zeng T. Guo K. Taylor M.S. Vellarikkal S.K. Barry A.E. Sias-Garcia O. Bloemendal A. Munson G. Guckelberger P. Nguyen T.H. Bergman D.T. Hinshaw S. Cheng N. Cleary B. Aragam K. Lander E.S. Finucane H.K. Mukhopadhyay D. Gupta R.M. Engreitz J.M. Convergence of coronary artery disease genes onto endothelial cell programs. Nature 2024 626 8000 799 807 10.1038/s41586‑024‑07022‑x 38326615
    [Google Scholar]
  6. Adelus M.L. Ding J. Tran B.T. Conklin A.C. Golebiewski A.K. Stolze L.K. Whalen M.B. Cusanovich D.A. Romanoski C.E. Single-cell ‘omic profiles of human aortic endothelial cells in vitro and human atherosclerotic lesions ex vivo reveal heterogeneity of endothelial subtype and response to activating perturbations. eLife 2024 12 RP91729 10.7554/eLife.91729 38578680
    [Google Scholar]
  7. SenthilKumar G. Katunaric B. Zirgibel Z. Lindemer B. Jaramillo-Torres M.J. Bordas-Murphy H. Schulz M.E. Pearson P.J. Freed J.K. Necessary role of ceramides in the human microvascular endothelium during health and disease. Circ. Res. 2024 134 1 81 96 10.1161/CIRCRESAHA.123.323445 38037825
    [Google Scholar]
  8. Nasr M. Fay A. Lupieri A. Malet N. Darmon A. Zahreddine R. Swiader A. Wahart A. Viaud J. Nègre-Salvayre A. Hirsch E. Monteyne D. Perez-Morgà D. Dupont N. Codogno P. Ramel D. Morel E. Laffargue M. Gayral S. PI3KCIIα-dependent autophagy program protects from endothelial dysfunction and atherosclerosis in response to low shear stress in mice. Arterioscler. Thromb. Vasc. Biol. 2024 44 3 620 634 10.1161/ATVBAHA.123.319978 38152888
    [Google Scholar]
  9. Tian Z. Ning H. Wang X. Wang Y. Han T. Sun C. Endothelial autophagy promotes atheroprotective communication between endothelial and smooth muscle cells via exosome-mediated delivery of mir-204-5p. Arterioscler. Thromb. Vasc. Biol. 2024 44 8 1813 1832 10.1161/ATVBAHA.123.319993 38957984
    [Google Scholar]
  10. Pan H. Wu T. Huang K. Guo Z. Liang H. Lyu P. Huang H. Feng X. Wang Q. Hu J. He Y. Guo Z. Yin M. Zhang Y. Reducing SULT2B1 promotes the interaction of LncRNAgga3-204 with SMAD4 to inhibit the macrophage inflammatory response and delay atherosclerosis progression. Transl. Res. 2024 268 13 27 10.1016/j.trsl.2024.01.004 38286358
    [Google Scholar]
  11. Zhu X. Liu Y. Cui J. Lv J. Li C. Lu J. LncRNA LYPLAL1-DT screening from type 2 diabetes with macrovascular complication contributes protective effects on human umbilical vein endothelial cells via regulating the miR-204-5p/SIRT1 axis. Cell Death Discov. 2022 8 1 245 10.1038/s41420‑022‑01019‑z
    [Google Scholar]
  12. Meng Q. Pu L. Qi M. Li S. Sun B. Wang Y. Laminar shear stress inhibits inflammation by activating autophagy in human aortic endothelial cells through HMGB1 nuclear translocation. Commun. Biol. 2022 5 1 425 10.1038/s42003‑022‑03392‑y
    [Google Scholar]
  13. Arima T. Yamasaki K. John R.M. Kato K. Sakumi K. Nakabeppu Y. Wake N. Kono T. The human HYMAI/PLAGL1 differentially methylated region acts as an imprint control region in mice. Genomics 2006 88 5 650 658 10.1016/j.ygeno.2006.07.005 16928428
    [Google Scholar]
  14. Bosire C. Vidal A.C. Smith J.S. Jima D. Huang Z. Skaar D. Valea F. Bentley R. Gradison M. Yarnall K.S.H. Ford A. Overcash F. Murphy S.K. Hoyo C. Association between PEG3 DNA methylation and high- grade cervical intraepithelial neoplasia. Infect. Agent. Cancer 2021 16 1 42 10.1186/s13027‑021‑00382‑3 34120615
    [Google Scholar]
  15. Iglesias-Platas I. Martin-Trujillo A. Cirillo D. Court F. Guillaumet-Adkins A. Camprubi C. Bourc’his D. Hata K. Feil R. Tartaglia G. Arnaud P. Monk D. Characterization of novel paternal ncRNAs at the Plagl1 locus, including Hymai, predicted to interact with regulators of active chromatin. PLoS One 2012 7 6 38907 10.1371/journal.pone.0038907 22723905
    [Google Scholar]
  16. Forrest I.S. Petrazzini B.O. Duffy Á. Park J.K. Marquez-Luna C. Jordan D.M. Rocheleau G. Cho J.H. Rosenson R.S. Narula J. Nadkarni G.N. Do R. Machine learning-based marker for coronary artery disease: Derivation and validation in two longitudinal cohorts. Lancet 2023 401 10372 215 225 10.1016/S0140‑6736(22)02079‑7 36563696
    [Google Scholar]
  17. Schuermans A. Nakao T. Uddin M.M. Hornsby W. Ganesh S. Shadyab A.H. Liu S. Haring B. Shufelt C.L. Taub M.A. Mathias R.A. Kooperberg C. Reiner A.P. Bick A.G. Manson J.E. Natarajan P. Honigberg M.C. Age at menopause, leukocyte telomere length, and coronary artery disease in postmenopausal women. Circ. Res. 2023 133 5 376 386 10.1161/CIRCRESAHA.123.322984 37489536
    [Google Scholar]
  18. Chowdhury R.R. D’Addabbo J. Huang X. Veizades S. Sasagawa K. Louis D.M. Cheng P. Sokol J. Jensen A. Tso A. Shankar V. Wendel B.S. Bakerman I. Liang G. Koyano T. Fong R. Nau A.N. Ahmad H. Gopakumar J. Wirka R. Lee A.S. Boyd J. Woo Y.J. Quertermous T. Gulati G.S. Jaiswal S. Chien Y.H. Chan C.K.F. Davis M.M. Nguyen P.K. Human coronary plaque T cells are clonal and cross-react to virus and self. Circ. Res. 2022 130 10 1510 1530 10.1161/CIRCRESAHA.121.320090 35430876
    [Google Scholar]
  19. Nguyen D.D. Spertus J.A. Alexander K.P. Newman J.D. Dodson J.A. Jones P.G. Stevens S.R. O’Brien S.M. Gamma R. Perna G.P. Garg P. Vitola J.V. Chow B.J.W. Vertes A. White H.D. Smanio P.E.P. Senior R. Held C. Li J. Boden W.E. Mark D.B. Reynolds H.R. Bangalore S. Chan P.S. Stone G.W. Arnold S.V. Maron D.J. Hochman J.S. Health status and clinical outcomes in older adults with chronic coronary disease. J. Am. Coll. Cardiol. 2023 81 17 1697 1709 10.1016/j.jacc.2023.02.048 37100486
    [Google Scholar]
  20. Collet J.P. Zeitouni M. Procopi N. Hulot J.S. Silvain J. Kerneis M. Thomas D. Lattuca B. Barthelemy O. Lavie-Badie Y. Esteve J.B. Payot L. Brugier D. Lopes I. Diallo A. Vicaut E. Montalescot G. Long-term evolution of premature coronary artery disease. J. Am. Coll. Cardiol. 2019 74 15 1868 1878 10.1016/j.jacc.2019.08.1002 31601367
    [Google Scholar]
  21. Yao K. Dai Y. Shen J. Wang Y. Yang H. Wu R. Liao Q. Wu H. Fang X. Shali S. Xu L. Hao M. Lin C. Sun Z. Liu Y. Li M. Wang Z. Gao Q. Zhang S. Li C. Gao W. Ge L. Zou Y. Sun A. Qian J. Jin L. Hong S. Zheng Y. Ge J. Exome sequencing identifies rare mutations of LDLR and QTRT1 conferring risk for early-onset coronary artery disease in Chinese. Natl. Sci. Rev. 2022 9 8 nwac102 10.1093/nsr/nwac102 36060302
    [Google Scholar]
  22. Goyal P. Nanna M.G. Stable coronary artery disease in the age of geriatric cardiology. J. Am. Coll. Cardiol. 2023 81 17 1710 1713 10.1016/j.jacc.2023.03.378 37100487
    [Google Scholar]
  23. Dong S. Cai Z. Yu J. Liang M. Zhou Y. Ding M. Zeng X. Zhang X. Loss of lncRNAs 1700101O22Rik and 1700027A15Rik causes sperm malformation and subfertility. Andrology 2025 13 5 1223 1235 10.1111/andr.70011 39950604
    [Google Scholar]
  24. Jia M. Li Q. Guo J. Shi W. Zhu L. Huang Y. Li Y. Wang L. Ma S. Zhuang T. Wang X. Pan Q. Wei X. Qin Y. Li X. Jin J. Zhi X. Tang J. Jing Q. Li S. Jiang L. Qu L. Osto E. Zhang J. Wang X. Yu B. Meng D. Deletion of BACH1 attenuates atherosclerosis by reducing endothelial inflammation. Circ. Res. 2022 130 7 1038 1055 10.1161/CIRCRESAHA.121.319540 35196865
    [Google Scholar]
  25. Chen L. Huang Y. High expression of lncRNA PELATON serves as a risk factor for the incidence and prognosis of acute coronary syndrome. Sci. Rep. 2022 12 1 8030 10.1038/s41598‑022‑11260‑2 35577857
    [Google Scholar]
  26. Zhang R. Bu F. Wang Y. Huang M. Lin X. Wu C. Chen J. Huang Y. Wang H. Ye S. Hu X. Wang Q. Zheng L. LncRNA RP4-639F20.1 interacts with THRAP3 to attenuate atherosclerosis by regulating c-FOS in vascular smooth muscle cells proliferation and migration. Atherosclerosis 2023 379 117183 10.1016/j.atherosclerosis.2023.06.974 37549548
    [Google Scholar]
  27. Shen S. Zheng X. Zhu Z. Zhao S. Zhou Q. Song Z. Wang G. Wang Z. Silencing of GAS5 represses the malignant progression of atherosclerosis through upregulation of miR-135a. Biomed. Pharmacother. 2019 118 109302 10.1016/j.biopha.2019.109302 31545249
    [Google Scholar]
  28. Cheng X. Shihabudeen Haider Ali M.S. Baki V.B. Moran M. Su H. Sun X. Multifaceted roles of Meg3 in cellular senescence and atherosclerosis. Atherosclerosis 2024 392 117506 10.1016/j.atherosclerosis.2024.117506 38518516
    [Google Scholar]
  29. Hosen M.R. Li Q. Liu Y. Zietzer A. Maus K. Goody P. Uchida S. Latz E. Werner N. Nickenig G. Jansen F. CAD increases the long noncoding RNA PUNISHER in small extracellular vesicles and regulates endothelial cell function via vesicular shuttling. Mol. Ther. Nucleic Acids 2021 25 388 405 10.1016/j.omtn.2021.05.023 34484864
    [Google Scholar]
  30. Dybas J. Bulat K. Blat A. Mohaissen T. Wajda A. Mardyla M. Kaczmarska M. Franczyk-Zarow M. Malek K. Chlopicki S. Marzec K.M. Age–related and atherosclerosis–related erythropathy in ApoE/LDLR−/− mice. Biochim. Biophys. Acta Mol. Basis Dis. 2020 1866 12 165972 10.1016/j.bbadis.2020.165972 32949768
    [Google Scholar]
  31. Tyrrell D.J. Goldstein D.R. Ageing and atherosclerosis: Vascular intrinsic and extrinsic factors and potential role of IL-6. Nat. Rev. Cardiol. 2021 18 1 58 68 10.1038/s41569‑020‑0431‑7 32918047
    [Google Scholar]
  32. Qiao L. Ma J. Zhang Z. Sui W. Zhai C. Xu D. Wang Z. Lu H. Zhang M. Zhang C. Chen W. Zhang Y. Deficient chaperone-mediated autophagy promotes inflammation and atherosclerosis. Circ. Res. 2021 129 12 1141 1157 10.1161/CIRCRESAHA.121.318908 34704457
    [Google Scholar]
  33. Traughber C.A. Timinski K. Prince A. Bhandari N. Neupane K. Khan M.R. Opoku E. Opoku E. Brubaker G. Shin J. Hong J. Kanuri B. Ertugral E.G. Nagareddy P.R. Kothapalli C.R. Cherepanova O. Smith J.D. Gulshan K. Disulfiram reduces atherosclerosis and enhances efferocytosis, autophagy, and atheroprotective gut microbiota in hyperlipidemic mice. J. Am. Heart Assoc. 2024 13 8 033881 10.1161/JAHA.123.033881 38563369
    [Google Scholar]
  34. Chen X. Cao Y. Guo Y. Liu J. Ye X. Li H. Zhang L. Feng W. Xian S. Yang Z. Wang L. Wang T. microRNA-125b-1-3p mediates autophagy via the RRAGD/mTOR/ULK1 signaling pathway and mitigates atherosclerosis progression. Cell. Signal. 2024 118 111136 10.1016/j.cellsig.2024.111136 38471617
    [Google Scholar]
  35. Ouyang S. Chen W. Zeng G. Lei C. Tian G. Zhu M. Liu Y. Yang M. MicroRNA-183-3p up-regulated by vagus nerve stimulation mitigates chronic systolic heart failure via the reduction of BNIP3L-mediated autophagy. Gene 2020 726 144136 10.1016/j.gene.2019.144136 31629817
    [Google Scholar]
  36. Guo F.X. Wu Q. Li P. Zheng L. Ye S. Dai X.Y. Kang C.M. Lu J.B. Xu B.M. Xu Y.J. Xiao L. Lu Z.F. Bai H.L. Hu Y.W. Wang Q. The role of the LncRNA-FA2H-2-MLKL pathway in atherosclerosis by regulation of autophagy flux and inflammation through mTOR-dependent signaling. Cell Death Differ. 2019 26 9 1670 1687 10.1038/s41418‑018‑0235‑z 30683918
    [Google Scholar]
  37. Zhu Y. Yang T. Duan J. Mu N. Zhang T. MALAT1/miR-15b-5p/MAPK1 mediates endothelial progenitor cells autophagy and affects coronary atherosclerotic heart disease via mTOR signaling pathway. Aging 2019 11 4 1089 1109 10.18632/aging.101766 30787203
    [Google Scholar]
  38. Luo Y. Zheng S. Wu Q. Wu J. Zhou R. Wang C. Wu Z. Rong X. Huang N. Sun L. Bin J. Liao Y. Shi M. Liao W. Long noncoding RNA (lncRNA) EIF3J-DT induces chemoresistance of gastric cancer via autophagy activation. Autophagy 2021 17 12 4083 4101 10.1080/15548627.2021.1901204 33764843
    [Google Scholar]
  39. Liu H. Zhou Z. Deng H. Tian Z. Wu Z. Liu X. Ren Z. Jiang Z. Trim65 attenuates isoproterenol-induced cardiac hypertrophy by promoting autophagy and ameliorating mitochondrial dysfunction via the Jak1/Stat1 signaling pathway. Eur. J. Pharmacol. 2023 949 175735 10.1016/j.ejphar.2023.175735 37080331
    [Google Scholar]
  40. Cui X. Wang B. Han D. Cheng M. Yuan P. Du P. Hou Y. Su C. Tang J. Zhang J. Exacerbation of atherosclerosis by STX17 knockdown: Unravelling the role of autophagy and inflammation. J. Cell. Mol. Med. 2024 28 10 18402 10.1111/jcmm.18402 39008328
    [Google Scholar]
  41. Li B. Ji Y. Yi C. Wang X. Liu C. Wang C. Lu X. Xu X. Wang X. Rutin inhibits Ox-LDL-mediated macrophage inflammation and foam cell formation by inducing autophagy and modulating pi3k/atk signaling. Molecules 2022 27 13 4201 10.3390/molecules27134201 35807447
    [Google Scholar]
  42. Tian Z. Yan B.J. Luo W. Gui D.D. Zhou K. Tian K.J. Ma Y. Zhou Z.X. Jiang Z.S. Sestrin2 in atherosclerosis. Clin. Chim. Acta 2021 523 325 329 10.1016/j.cca.2021.10.019 34666031
    [Google Scholar]
  43. Luo J. Wang L. Cui C. Chen H. Zeng W. Li X. MicroRNA-19a-3p inhibits endothelial dysfunction in atherosclerosis by targeting JCAD. BMC. Cardiovasc. Disord. 2024 24 394 10.1186/s12872‑024‑04063‑y
    [Google Scholar]
  44. Zhang H. Ge S. Ni B. He K. Zhu P. Wu X. Shao Y. Augmenting ATG14 alleviates atherosclerosis and inhibits inflammation via promotion of autophagosome-lysosome fusion in macrophages. Autophagy 2021 17 12 4218 4230 10.1080/15548627.2021.1909833 33849389
    [Google Scholar]
  45. Han D. Huang M. Chang Z. Sun W. KLF15 transcriptionally activates ATG14 to promote autophagy and attenuate damage of ox-LDL-induced HAECs. Mol. Biotechnol. 2024 66 1 112 122 10.1007/s12033‑023‑00742‑x 37043109
    [Google Scholar]
  46. Li L. Li W. Liu Y. Han B. Yu Y. Lin H. MEHP induced mitochondrial damage by promoting ROS production in CIK cells, leading to apoptosis, autophagy, cell cycle arrest. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2025 288 110064 10.1016/j.cbpc.2024.110064 39586385
    [Google Scholar]
  47. Xia L. Xing Y. Ye X. Wu Y. Yang Y. Yin Z. Wang A. Chen J. Zhang M. TRIM21-driven K63-linked ubiquitination of RBM38c, as a novel interactor of BECN1, contributes to DNA damage-induced autophagy. Cell Death Differ. 2025 32 7 1317 1335 10.1038/s41418‑025‑01480‑0 40133668
    [Google Scholar]
  48. Ren Y. Liang J. Chen B. Liu X. Chen J. Liu X. LncRNA AC100865.1 regulates macrophage adhesion and ox-LDL intake through miR-7/GDF5 pathway. Cell Signal 2025 131 111748 10.1016/j.cellsig.2025.111748
    [Google Scholar]
  49. Zhang B. Wang J. Du L. Shao L. Zou Y. Liu H. Liu J. Knockdown of NCK1-AS1 inhibits the development of atherosclerosis by targeting miR-1197/COX10 axis. J. Biol. Eng. 2022 16 1 2 10.1186/s13036‑021‑00281‑6 34986861
    [Google Scholar]
  50. Tu Z. Hu Y. Raizada D. Bassal M.A. Tenen D.G. Karnoub A.E. Long noncoding RNA–mediated activation of PROTOR1/PRR5-AKT signaling shunt downstream of PI3K in triple-negative breast cancer. Proc. Natl. Acad. Sci. USA 2022 119 43 2203180119 10.1073/pnas.2203180119 36269860
    [Google Scholar]
  51. Hu Y. Lin Y. Yang J. Wang S. Gao L. Bi Y. Wang Y. Mitochondrial dysfunction and oxidative stress in selective fetal growth restriction. Placenta 2024 156 46 54 10.1016/j.placenta.2024.09.005 39265375
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673428431250917095939
Loading
/content/journals/cmc/10.2174/0109298673428431250917095939
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keywords: HYMAI ; ATG14 ; autophagy ; coronary atherosclerotic disease ; miR-19a-3p ; atherosclerosis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test