Skip to content
2000
image of Telmisartan Inhibits Non-Small Cell Lung Cancer by Inducing Ferroptosis through the NRF2/GPX4 Signaling Axis

Abstract

Introduction

Non-Small Cell Lung Cancer (NSCLC) treatment is often challenged by drug resistance. The antihypertensive drug telmisartan has shown anti-tumor potential, but its underlying mechanism remains unclear. Ferroptosis, a newly identified form of cell death, may serve as a promising therapeutic target. The objective is to investigate whether telmisartan inhibits NSCLC by inducing ferroptosis and to elucidate its underlying mechanism.

Methods

cell assays and mouse models were used, along with molecular biology techniques, to evaluate the effects of telmisartan on NSCLC and its mechanism of action.

Results

Telmisartan significantly suppressed NSCLC cell proliferation and tumor growth. Mechanistic studies revealed that telmisartan induced ferroptosis by inhibiting the nuclear translocation of Nuclear Factor Erythroid 2-Related Factor 2 (NRF2) and downregulating Glutathione Peroxidase 4 (GPX4) expression. The anti-tumor effect of telmisartan was reversed by ferroptosis inhibitors.

Discussion

Telmisartan can inhibit the proliferation of NSCLC cells and and induce cell ferroptosis. Telmisartan can also inhibit the nuclear translocation of NRF2, thereby affecting the expression of GPX4.

Conclusion

Telmisartan inhibited NSCLC by inducing ferroptosis the NRF2/GPX4 axis, offering a new therapeutic strategy and potential clinical application for NSCLC treatment.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673422337251024103233
2026-01-08
2026-02-13
Loading full text...

Full text loading...

References

  1. Burt J.R. Qaqish N. Stoddard G. Jridi A. Anderson P.S. Woods L. Newman A. Carter M.R. Ellessy R. Chamberlin J. Kabakus I. Non-small cell lung cancer in ever-smokers vs never-smokers. BMC Med 2025 23 1 3 10.1186/s12916‑024‑03844‑8 39757150
    [Google Scholar]
  2. Ernani V. Appiah A.K. Baine M.J. Smith L.M. Ganti A.K. The impact of histology in the outcomes of patients with early-stage non-small cell lung cancer (NSCLC) treated with stereotactic body radiation therapy (SBRT) and adjuvant chemotherapy. Cancer Treat Res. Commun. 2020 24 100197 10.1016/j.ctarc.2020.100197 32777751
    [Google Scholar]
  3. Löfling L. Karimi A. Sandin F. Bahmanyar S. Kieler H. Lambe M. Lamberg K. Wagenius G. Clinical characteristics and survival in non-small cell lung cancer patients by smoking history: A population-based cohort study. Acta Oncol 2019 58 11 1618 1627 10.1080/0284186X.2019.1638521 31373239
    [Google Scholar]
  4. Bade B.C. Dela Cruz C.S. Lung Cancer 2020. Clin Chest Med 2020 41 1 1 24 10.1016/j.ccm.2019.10.001 32008623
    [Google Scholar]
  5. Li C. Lei S. Ding L. Xu Y. Wu X. Wang H. Zhang Z. Gao T. Zhang Y. Li L. Global burden and trends of lung cancer incidence and mortality. Chin. Med. J. 2023 136 13 1583 1590 10.1097/CM9.0000000000002529 37027426
    [Google Scholar]
  6. Barta J.A. Powell C.A. Wisnivesky J.P. Global epidemiology of lung cancer. Ann Glob Health 2019 85 1 8 10.5334/aogh.2419 30741509
    [Google Scholar]
  7. Howlader N. Forjaz G. Mooradian M.J. Meza R. Kong C.Y. Cronin K.A. Mariotto A.B. Lowy D.R. Feuer E.J. The effect of advances in lung-cancer treatment on population mortality. N. Engl. J. Med. 2020 383 7 640 649 10.1056/NEJMoa1916623 32786189
    [Google Scholar]
  8. Dai J. Lu X. Zhang C. Qu T. Li W. Su J. Guo R. Yin D. Wu P. Han L. Zhang E. NNMT promotes acquired EGFR-TKI resistance by forming EGR1 and lactate-mediated double positive feedback loops in non-small cell lung cancer. Mol. Cancer 2025 24 1 79 10.1186/s12943‑025‑02285‑y 40089784
    [Google Scholar]
  9. Herrera-Juárez M. Serrano-Gómez C. Bote-de-Cabo H. Paz-Ares L. Targeted therapy for lung cancer: Beyond EGFR and ALK. Cancer 2023 129 12 1803 1820 10.1002/cncr.34757 37073562
    [Google Scholar]
  10. Geng Y. Zhang Q. Feng S. Li C. Wang L. Zhao X. Yang Z. Li Z. Luo H. Liu R. Lu B. Wang X. Safety and Efficacy of PD-1/PD-L1 inhibitors combined with radiotherapy in patients with non-small-cell lung cancer: A systematic review and meta-analysis. Cancer Med 2021 10 4 1222 1239 10.1002/cam4.3718 33465302
    [Google Scholar]
  11. Huang C. Ren S. Chen Y. Liu A. Wu Q. Jiang T. Lv P. Song D. Hu F. Lan J. Sun L. Zheng X. Luo X. Chu Q. Jia K. Li Y. Wang J. Zou C. Hu J. Wang G. PD-L1 methylation restricts PD-L1/PD-1 interactions to control cancer immune surveillance. Sci. Adv 2023 9 21 eade4186 10.1126/sciadv.ade4186 37235656
    [Google Scholar]
  12. Chmielecki J. Gray J.E. Cheng Y. Ohe Y. Imamura F. Cho B.C. Lin M.C. Majem M. Shah R. Rukazenkov Y. Todd A. Markovets A. Barrett J.C. Hartmaier R.J. Ramalingam S.S. Candidate mechanisms of acquired resistance to first-line osimertinib in EGFR-mutated advanced non-small cell lung cancer. Nat Commun 2023 14 1 1070 10.1038/s41467‑023‑35961‑y 36849494
    [Google Scholar]
  13. To C. Beyett T.S. Jang J. Feng W.W. Bahcall M. Haikala H.M. Shin B.H. Heppner D.E. Rana J.K. Leeper B.A. Soroko K.M. Poitras M.J. Gokhale P.C. Kobayashi Y. Wahid K. Kurppa K.J. Gero T.W. Cameron M.D. Ogino A. Mushajiang M. Xu C. Zhang Y. Scott D.A. Eck M.J. Gray N.S. Jänne P.A. An allosteric inhibitor against the therapy-resistant mutant forms of EGFR in non-small cell lung cancer. Nat. Can. 2022 3 4 402 417 10.1038/s43018‑022‑00351‑8 35422503
    [Google Scholar]
  14. Li Y. Wang N. Huang Y. He S. Bao M. Wen C. Wu L. CircMYBL1 suppressed acquired resistance to osimertinib in non-small-cell lung cancer. Cancer Genet 2024 284-285 34 42 10.1016/j.cancergen.2024.04.001 38626533
    [Google Scholar]
  15. Xiao G. Wang X. Xu Z. Liu Y. Jing J. Lung-specific metastasis: The coevolution of tumor cells and lung microenvironment. Mol. Cancer 2025 24 1 118 10.1186/s12943‑025‑02318‑6 40241074
    [Google Scholar]
  16. Lin X. Liao Y. Chen X. Long D. Yu T. Shen F. Regulation of oncoprotein 18/stathmin signaling by erk concerns the resistance to taxol in nonsmall cell lung cancer cells. Cancer Biother. Radiopharm 2016 31 2 37 43 10.1089/cbr.2015.1921 26881937
    [Google Scholar]
  17. Jiang X. Stockwell B.R. Conrad M. Ferroptosis: Mechanisms, biology and role in disease. Nat. Rev. Mol. Cell. Biol. 2021 22 4 266 282 10.1038/s41580‑020‑00324‑8 33495651
    [Google Scholar]
  18. Zeng F. Nijiati S. Tang L. Ye J. Zhou Z. Chen X. Ferroptosis detection: From approaches to applications. Angew. Chem. Int. Ed. 2023 62 35 e202300379 10.1002/anie.202300379 36828775
    [Google Scholar]
  19. Liang D. Minikes A.M. Jiang X. Ferroptosis at the intersection of lipid metabolism and cellular signaling. Mol. Cell 2022 82 12 2215 2227 10.1016/j.molcel.2022.03.022 35390277
    [Google Scholar]
  20. Dixon S.J. Lemberg K.M. Lamprecht M.R. Skouta R. Zaitsev E.M. Gleason C.E. Patel D.N. Bauer A.J. Cantley A.M. Yang W.S. Morrison B. Stockwell B.R. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell 2012 149 5 1060 1072 10.1016/j.cell.2012.03.042 22632970
    [Google Scholar]
  21. Wang Y. Hu M. Cao J. Wang F. Han J.R. Wu T.W. Li L. Yu J. Fan Y. Xie G. Lian H. Cao Y. Naowarojna N. Wang X. Zou Y. ACSL4 and polyunsaturated lipids support metastatic extravasation and colonization. Cell 2025 188 2 412 429.e27 10.1016/j.cell.2024.10.047 39591965
    [Google Scholar]
  22. Cui W. Hao M. Yang X. Yin C. Chu B. Gut microbial metabolism in ferroptosis and colorectal cancer. Trends Cell Biol 2025 35 4 341 351 10.1016/j.tcb.2024.08.006 39261152
    [Google Scholar]
  23. Haoyue W. Kexiang S. Shan T.W. Jiamin G. Luyun Y. Junkai W. Wanli D. Icariin promoted ferroptosis by activating mitochondrial dysfunction to inhibit colorectal cancer and synergistically enhanced the efficacy of PD-1 inhibitors. Phytomedicine 2025 136 156224 10.1016/j.phymed.2024.156224 39642461
    [Google Scholar]
  24. Zou J. Wang L. Tang H. Liu X. Peng F. Peng C. Ferroptosis in non-small cell lung cancer: Progression and therapeutic potential on It. Int. J. Mol. Sci. 2021 22 24 13335 10.3390/ijms222413335 34948133
    [Google Scholar]
  25. Zheng H. Chen H. Cai Y. Shen M. Li X. Han Y. Deng X. Cao H. Liu J. Li H. Liu B. Li G. Wang X. Chen H. Hou J. Lin S.H. Zong L. Zhang Y. Hydrogen sulfide-mediated persulfidation regulates homocysteine metabolism and enhances ferroptosis in non-small cell lung cancer. Mol. Cell 2024 84 20 4016 4030.e6 10.1016/j.molcel.2024.08.035 39321805
    [Google Scholar]
  26. Xu C. Jiang Z.B. Shao L. Zhao Z.M. Fan X.X. Sui X. Yu L.L. Wang X.R. Zhang R.N. Wang W.J. Xie Y.J. Zhang Y.Z. Nie X.W. Xie C. Huang J.M. Wang J. Wang J. Leung E.L.H. Wu Q.B. β-Elemene enhances erlotinib sensitivity through induction of ferroptosis by upregulating lncRNA H19 in EGFR-mutant non-small cell lung cancer. Pharmacol Res. 2023 191 106739 10.1016/j.phrs.2023.106739 36948327
    [Google Scholar]
  27. Zhao L.P. Wang H.J. Hu D. Hu J.H. Guan Z.R. Yu L.H. Jiang Y.P. Tang X.Q. Zhou Z.H. Xie T. Lou J.S. β-Elemene induced ferroptosis via TFEB-mediated GPX4 degradation in EGFR wide-type non-small cell lung cancer. J. Adv. Res. 2024 62 257 272 10.1016/j.jare.2023.08.018 37689240
    [Google Scholar]
  28. Bruedigam C. Porter A.H. Song A. Vroeg in de Wei G. Stoll T. Straube J. Cooper L. Cheng G. Kahl V.F.S. Sobinoff A.P. Ling V.Y. Jebaraj B.M.C. Janardhanan Y. Haldar R. Bray L.J. Bullinger L. Heidel F.H. Kennedy G.A. Hill M.M. Pickett H.A. Abdel-Wahab O. Hartel G. Lane S.W. Imetelstat-mediated alterations in fatty acid metabolism to induce ferroptosis as a therapeutic strategy for acute myeloid leukemia. Nat. Can. 2023 5 1 47 65 10.1038/s43018‑023‑00653‑5 37904045
    [Google Scholar]
  29. Lian J. Zhang C. Lu H. A ferroptosis-related lncrna signature associated with prognosis, tumor immune environment, and genome instability in hepatocellular carcinoma. Comput. Math. Methods Med. 2022 2022 1 19 10.1155/2022/6284540 36035299
    [Google Scholar]
  30. Khorsand M. Mostafavi-Pour Z. Razban V. Khajeh S. Zare R. Combinatorial effects of telmisartan and docetaxel on cell viability and metastatic gene expression in human prostate and breast cancer cells. Mol. Biol. Res. Commun. 2022 11 1 11 20 10.22099/mbrc.2022.42638.1700 35463822
    [Google Scholar]
  31. Surapaneni S.K. Nottingham E. Mondal A. Patel N. Arthur P. Gebeyehu A. Kalvala A.K. Rishi A.K. Singh M. Telmisartan facilitates the anticancer effects of carp-1 functional mimetic and sorafenib in rociletinib resistant non-small cell lung cancer. Anticancer Res. 2021 41 9 4215 4228 10.21873/anticanres.15226 34475041
    [Google Scholar]
  32. Wang Y. Zhang T. Li C. Guo J. Xu B. Xue L. Telmisartan attenuates human glioblastoma cells proliferation and oncogenicity by inducing the lipid oxidation. Asia. Pac. J. Clin. Oncol. 2022 18 3 217 223 10.1111/ajco.13574 33945216
    [Google Scholar]
  33. Mielczarek-Puta M. Otto-Ślusarczyk D. Chrzanowska A. Filipek A. Graboń W. Telmisartan influences the antiproliferative activity of linoleic acid in human colon cancer cells. Nutr. Cancer 2020 72 1 98 109 10.1080/01635581.2019.1613552 31094234
    [Google Scholar]
  34. Koyanagi T. Yano K. Kim S. Murayama N. Yamazaki H. Tamai I. In vivo hepatic clearance of lipophilic drugs predicted by in vitro uptake data into cryopreserved hepatocytes suspended in sera of rats, guinea pigs, monkeys and humans. Xenobiotica 2019 49 8 887 894 10.1080/00498254.2018.1514476 30124359
    [Google Scholar]
  35. Yudaev P. Tupikov A. Chistyakov E. Organocyclophosphazenes and materials based on them for pharmaceuticals and biomedicine. Biomolecules 2025 15 2 262 10.3390/biom15020262 40001565
    [Google Scholar]
  36. Rodgers A. Salam A. Schutte A.E. Cushman W.C. de Silva H.A. Di Tanna G.L. Grobbee D.E. Narkiewicz K. Ojji D.B. Poulter N.R. Schlaich M.P. Oparil S. Spiering W. Williams B. Wright J.T. Lakshman P. Uluwattage W. Hay P. Pereira T. Amarasena N. Ranasinghe G. Gianacas C. Shanthakumar M. Liu X. Wang N. Gnanenthiran S.R. Whelton P.K. Efficacy and safety of a novel low-dose triple single-pill combination of telmisartan, amlodipine and indapamide, compared with dual combinations for treatment of hypertension: A randomised, double-blind, active-controlled, international clinical trial. Lancet 2024 404 10462 1536 1546 10.1016/S0140‑6736(24)01744‑6 39426836
    [Google Scholar]
  37. Green R. Howell M. Khalil R. Nair R. Yan J. Foran E. Katiri S. Banerjee J. Singh M. Bharadwaj S. Mohapatra S.S. Mohapatra S. Actinomycin D and telmisartan combination targets lung cancer stem cells through the wnt/beta catenin pathway. Sci. Rep. 2019 9 1 18177 10.1038/s41598‑019‑54266‑z 31796785
    [Google Scholar]
  38. Kumar U. Aich J. Devarajan S. Exploring the repurposing potential of telmisartan drug in breast cancer: An in-silico and in-vitro approach. Anticancer Drugs 2023 34 10 1094 1103 10.1097/CAD.0000000000001509 36847075
    [Google Scholar]
  39. de Araújo Júnior R.F. Leitão Oliveira A.L.C.S. de Melo Silveira R.F. de Oliveira Rocha H.A. de França Cavalcanti P. de Araújo A.A. Telmisartan induces apoptosis and regulates Bcl-2 in human renal cancer cells. Exp. Biol. Med. 2015 240 1 34 44 10.1177/1535370214546267 25125501
    [Google Scholar]
  40. Lee L.D. Mafura B. Lauscher J.C. Seeliger H. Kreis M. Gröne J. Antiproliferative and apoptotic effects of telmisartan in human colon cancer cells. Oncol. Lett. 2014 8 6 2681 2686 10.3892/ol.2014.2592 25360175
    [Google Scholar]
  41. Wu T.T.L. Niu H.S. Chen L.J. Cheng J.T. Tong Y.C. Increase of human prostate cancer cell (DU145) apoptosis by telmisartan through PPAR-delta pathway. Eur. J. Pharmacol. 2016 775 35 42 10.1016/j.ejphar.2016.02.017 26852954
    [Google Scholar]
  42. Pu Z. Zhu M. Kong F. Telmisartan prevents proliferation and promotes apoptosis of human ovarian cancer cells through upregulating PPARγ and downregulating MMP-9 expression. Mol. Med. Rep. 2016 13 1 555 559 10.3892/mmr.2015.4512 26548340
    [Google Scholar]
  43. Fujita N. Fujita K. Iwama H. Kobara H. Fujihara S. Chiyo T. Namima D. Yamana H. Kono T. Takuma K. Hirata M. Kobayashi K. Kato K. Kamada H. Morishita A. Tsutsui K. Himoto T. Okano K. Suzuki Y. Masaki T. Antihypertensive drug telmisartan suppresses the proliferation of gastric cancer cells in vitro and in vivo . Oncol. Rep. 2020 44 1 339 348 10.3892/or.2020.7607 32627043
    [Google Scholar]
  44. Xing N. Du Q. Guo S. Xiang G. Zhang Y. Meng X. Xiang L. Wang S. Ferroptosis in lung cancer: A novel pathway regulating cell death and a promising target for drug therapy. Cell Death. Discov. 2023 9 1 110 10.1038/s41420‑023‑01407‑z 37005430
    [Google Scholar]
  45. Yuan S. Xi S. Weng H. Guo M.M. Zhang J.H. Yu Z.P. Zhang H. Yu Z. Xing Z. Liu M.Y. Ming D.J. Sah R.K. Zhou Y. Li G. Zeng T. Hong X. Li Y. Zeng X.T. Hu H. YTHDC1 as a tumor progression suppressor through modulating FSP1-dependent ferroptosis suppression in lung cancer. Cell Death Differ 2023 30 12 2477 2490 10.1038/s41418‑023‑01234‑w 37903990
    [Google Scholar]
  46. Ma L. Chen C. Zhao C. Li T. Ma L. Jiang J. Duan Z. Si Q. Chuang T.H. Xiang R. Luo Y. Targeting carnitine palmitoyl transferase 1A (CPT1A) induces ferroptosis and synergizes with immunotherapy in lung cancer. Signal Transduct. Target Ther. 2024 9 1 64 10.1038/s41392‑024‑01772‑w 38453925
    [Google Scholar]
  47. Zhang S. Wang Y. Telmisartan inhibits NSCLC A549 cell proliferation and migration by regulating the PI3K/AKT signaling pathway. Oncol. Lett. 2018 15 4 5859 5864 10.3892/ol.2018.8002 29552215
    [Google Scholar]
  48. Wang S. Liu G. Yu L. Zhang C. Marcucci F. Jiang Y. Fluorofenidone enhances cisplatin efficacy in non-small cell lung cancer: A novel approach to inhibiting cancer progression. Transl. Lung. Cancer Res. 2024 13 11 3175 3188 10.21037/tlcr‑24‑811 39670015
    [Google Scholar]
  49. Liang D. Feng Y. Zandkarimi F. Wang H. Zhang Z. Kim J. Cai Y. Gu W. Stockwell B.R. Jiang X. Ferroptosis surveillance independent of GPX4 and differentially regulated by sex hormones. Cell 2023 186 13 2748 2764.e22 10.1016/j.cell.2023.05.003 37267948
    [Google Scholar]
  50. Zhang W. Liu Y. Liao Y. Zhu C. Zou Z. GPX4, ferroptosis, and diseases. Biomed. Pharmacother. 2024 174 116512 10.1016/j.biopha.2024.116512 38574617
    [Google Scholar]
  51. Liu Y. Wan Y. Jiang Y. Zhang L. Cheng W. GPX4: The hub of lipid oxidation, ferroptosis, disease and treatment. Biochim. Biophys. Acta. Rev. Cancer 2023 1878 3 188890 10.1016/j.bbcan.2023.188890 37001616
    [Google Scholar]
  52. Xue Q. Yan D. Chen X. Li X. Kang R. Klionsky D.J. Kroemer G. Chen X. Tang D. Liu J. Copper-dependent autophagic degradation of GPX4 drives ferroptosis. Autophagy 2023 19 7 1982 1996 10.1080/15548627.2023.2165323 36622894
    [Google Scholar]
  53. Anandhan A. Dodson M. Shakya A. Chen J. Liu P. Wei Y. Tan H. Wang Q. Jiang Z. Yang K. Garcia J.G.N. Chambers S.K. Chapman E. Ooi A. Yang-Hartwich Y. Stockwell B.R. Zhang D.D. NRF2 controls iron homeostasis and ferroptosis through HERC2 and VAMP8. Sci. Adv. 2023 9 5 eade9585 10.1126/sciadv.ade9585 36724221
    [Google Scholar]
  54. Dodson M. Castro-Portuguez R. Zhang D.D. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox. Biol. 2019 23 101107 10.1016/j.redox.2019.101107 30692038
    [Google Scholar]
  55. Cui Y. Zhang Z. Zhou X. Zhao Z. Zhao R. Xu X. Kong X. Ren J. Yao X. Wen Q. Guo F. Gao S. Sun J. Wan Q. Microglia and macrophage exhibit attenuated inflammatory response and ferroptosis resistance after RSL3 stimulation via increasing NRF2 expression. J. Neuroinflammation 2021 18 1 249 10.1186/s12974‑021‑02231‑x 34717678
    [Google Scholar]
  56. Davinelli S. Medoro A. Siracusano M. Savino R. Saso L. Scapagnini G. Mazzone L. Oxidative stress response and NRF2 signaling pathway in autism spectrum disorder. Redox Biol. 2025 83 103661 10.1016/j.redox.2025.103661 40324316
    [Google Scholar]
  57. Wang Y. Yan S. Liu X. Deng F. Wang P. Yang L. Hu L. Huang K. He J. PRMT4 promotes ferroptosis to aggravate doxorubicin-induced cardiomyopathy via inhibition of the Nrf2/GPX4 pathway. Cell Death Differ. 2022 29 10 1982 1995 10.1038/s41418‑022‑00990‑5 35383293
    [Google Scholar]
  58. Zhao T. Yu Z. Zhou L. Wang X. Hui Y. Mao L. Fan X. Wang B. Zhao X. Sun C. Regulating Nrf2-GPx4 axis by bicyclol can prevent ferroptosis in carbon tetrachloride-induced acute liver injury in mice. Cell Death Discov. 2022 8 1 380 10.1038/s41420‑022‑01173‑4 36071041
    [Google Scholar]
  59. Yang T. Liu H. Yang C. Mo H. Wang X. Song X. Jiang L. Deng P. Chen R. Wu P. Chen A. Yan J. Galangin attenuates myocardial ischemic reperfusion-induced ferroptosis by targeting nrf2/gpx4 signaling pathway. Drug. Des. Devel. Ther. 2023 17 2495 2511 10.2147/DDDT.S409232 37637264
    [Google Scholar]
  60. Wang J. Dong X. Liu Y. Lin K. Chen J. Copy number gain of MET gene with low level in a metastatic lung adenocarcinoma patient represents response to salvage treatment with savolitinib and osimertinib: A case report. Front Oncol. 2025 15 1507677 10.3389/fonc.2025.1507677 40365349
    [Google Scholar]
  61. Zheng G. Sundquist J. Sundquist K. Ji J. Beta-Blockers use and risk of breast cancer in women with hypertension. Cancer Epidemiol. Biomarkers Prev. 2021 30 5 965 973 10.1158/1055‑9965.EPI‑20‑1599 33619022
    [Google Scholar]
  62. Cavalu S. Saber S. Amer A.E. Hamad R.S. Abdel-Reheim M.A. Elmorsy E.A. Abdelhamid A.M. The multifaceted role of beta-blockers in overcoming cancer progression and drug resistance: Extending beyond cardiovascular disorders. FASEB J. 2024 38 13 e23813 10.1096/fj.202400725RR 38976162
    [Google Scholar]
  63. Shen J. Huang Y.M. Wang M. Hong X.Z. Song X.N. Zou X. Pan Y.H. Ling W. Zhu M.H. Zhang X.X. Sui Y. Zhao H.L. Renin–angiotensin system blockade for the risk of cancer and death. J. Renin. Angiotensin Aldosterone Syst. 2016 17 3 1470320316656679 10.1177/1470320316656679 27402638
    [Google Scholar]
  64. Wu Z. Yibulayin W. He D. Xu K. Yibulayin X. Ma L. Sun X. EGFR and K-Ras Gene mutations in the diagnosis of non-small cell lung cancer and their pathological correlation. Int. J. Pharmacol. 2024 20 5 874 882 10.3923/ijp.2024.874.882
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673422337251024103233
Loading
/content/journals/cmc/10.2174/0109298673422337251024103233
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keywords: NSCLC ; ferroptosis ; telmisartan ; NRF2 ; GPX4 ; antihypertensive drug
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test