Skip to content
2000
image of Thirty Years of Structural Studies on Cyclin-Dependent Kinases: Implications for Drug Discovery

There is no abstract available.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673420332250618094707
2025-06-25
2025-09-06
Loading full text...

Full text loading...

/deliver/fulltext/cmc/10.2174/0109298673420332250618094707/BMS-CMC-2025-468.html?itemId=/content/journals/cmc/10.2174/0109298673420332250618094707&mimeType=html&fmt=ahah

References

  1. Murray A.W. Cyclin-dependent kinases: Regulators of the cell cycle and more. Chem. Biol. 1994 1 4 191 195 10.1016/1074‑5521(94)90009‑4 9383389
    [Google Scholar]
  2. Morgan D.O. Principles of CDK regulation. Nature 1995 374 6518 131 134 10.1038/374131a0 7877684
    [Google Scholar]
  3. Malumbres M. Cyclin-dependent kinases. Genome Biol. 2014 15 6 122 10.1186/gb4184 25180339
    [Google Scholar]
  4. Fagundes R. Teixeira L.K. Cyclin E/CDK2: DNA replication, replication stress and genomic instability. Front. Cell Dev. Biol. 2021 9 774845 10.3389/fcell.2021.774845 34901021
    [Google Scholar]
  5. De Bondt H.L. Rosenblatt J. Jancarik J. Jones H.D. Morgan D.O. Kim S.H. Crystal structure of cyclin-dependent kinase 2. Nature 1993 363 6430 595 602 10.1038/363595a0 8510751
    [Google Scholar]
  6. Jeffrey P.D. Russo A.A. Polyak K. Gibbs E. Hurwitz J. Massagué J. Pavletich N.P. Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature 1995 376 6538 313 320 10.1038/376313a0 7630397
    [Google Scholar]
  7. Russo A.A. Jeffrey P.D. Patten A.K. Massagué J. Pavletich N.P. Crystal structure of the p27Kip1 cyclin-dependent-kinase inibitor bound to the cyclin A–Cdk2 complex. Nature 1996 382 6589 325 331 10.1038/382325a0 8684460
    [Google Scholar]
  8. Zhang J. Gan Y. Li H. Yin J. He X. Lin L. Xu S. Fang Z. Kim B. Gao L. Ding L. Zhang E. Ma X. Li J. Li L. Xu Y. Horne D. Xu R. Yu H. Gu Y. Huang W. Inhibition of the CDK2 and Cyclin A complex leads to autophagic degradation of CDK2 in cancer cells. Nat. Commun. 2022 13 1 2835 10.1038/s41467‑022‑30264‑0 35595767
    [Google Scholar]
  9. De Azevedo W.F. Leclerc S. Meijer L. Havlicek L. Strnad M. Kim S.H. Inhibition of cyclin-dependent kinases by purine analogues: Crystal structure of human CDK2 complexed with roscovitine. Eur. J. Biochem. 1997 243 1-2 518 526 10.1111/j.1432‑1033.1997.0518a.x 9030780
    [Google Scholar]
  10. Muller C. Rabal O. Diaz Gonzalez C. Artificial intelligence, machine learning, and deep learning in real-life drug design cases. Methods Mol. Biol. 2022 2390 383 407 10.1007/978‑1‑0716‑1787‑8_16 34731478
    [Google Scholar]
  11. Pedregosa F. Varoquaux G. Gramfort A. Michel V. Thirion B. Grisel O. Blondel M. Prettenhofer P. Weiss R. Dubourg V. Verplas J. Passos A. Cournapeau D. Brucher M. Perrot M. Duchesnay E. Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 2011 12 2825 2830
    [Google Scholar]
  12. da Silva A.D. Bitencourt-Ferreira G. de Azevedo W.F. Taba: A tool to analyze the binding affinity. J. Comput. Chem. 2020 41 1 69 73 10.1002/jcc.26048 31410856
    [Google Scholar]
  13. de Azevedo W.F. Quiroga R. Villarreal M.A. da Silveira N.J.F. Bitencourt-Ferreira G. da Silva A.D. Veit-Acosta M. Oliveira P.R. Tutone M. Biziukova N. Poroikov V. Tarasova O. Baud S. SAnDReS 2.0: Development of machine‐learning models to explore the scoring function space. J. Comput. Chem. 2024 45 27 2333 2346 10.1002/jcc.27449 38900052
    [Google Scholar]
  14. Xavier M.M. Heck G.S. Avila M.B. Levin N.M.B. Pintro V.O. Carvalho N.L. de Azevedo W.F. SAnDReS a computational tool for statistical analysis of docking results and development of scoring functions. Comb. Chem. High Throughput Screen. 2016 19 10 801 812 27686428
    [Google Scholar]
  15. Bitencourt-Ferreira G. de Azevedo W.F. Exploring the scoring function space. Methods Mol. Biol. 2019 2053 275 281 10.1007/978‑1‑4939‑9752‑7_17 31452111
    [Google Scholar]
  16. Bitencourt-Ferreira G. de Azevedo W.F. Machine learning to predict binding affinity. Methods Mol. Biol. 2019 2053 251 273 10.1007/978‑1‑4939‑9752‑7_16 31452110
    [Google Scholar]
  17. Veit-Acosta M. de Azevedo W.F. Computational prediction of binding affinity for CDK2-ligand complexes. A protein target for cancer drug discovery. Curr. Med. Chem. 2022 29 14 2438 2455 10.2174/0929867328666210806105810 34365938
    [Google Scholar]
  18. Ross G.A. Morris G.M. Biggin P.C. One size does not fit all: The limits of structure-based models in drug discovery. J. Chem. Theory Comput. 2013 9 9 4266 4274 10.1021/ct4004228 24124403
    [Google Scholar]
  19. Bitencourt-Ferreira G. Villarreal M.A. Quiroga R. Biziukova N. Poroikov V. Tarasova O. de Azevedo W.F. Exploring scoring function space: Developing computational models for drug discovery. Curr. Med. Chem. 2024 31 17 2361 2377 10.2174/0929867330666230321103731 36944627
    [Google Scholar]
  20. Tarasova O. de Azevedo W.F. Cyclin dependent kinases in antiviral drug discovery. Curr. Med. Chem. 2025 10.2174/0109298673334631241208131015 39931979
    [Google Scholar]
  21. Culletta G. Almerico A.M. Tutone M. CDK2 allosteric modulators: The new route in the design of new drugs as anticancer and non-hormonal contraceptives. Curr. Med. Chem. 2025 10.2174/0109298673331207241019085108 39781710
    [Google Scholar]
  22. de Azevedo W.F. Predicting inhibition of CDK2 with SAnDReS: The application of machine learning to navigate the scoring function space. Curr. Med. Chem. 2025 10.2174/0109298673313727240819070317 39219431
    [Google Scholar]
  23. Srivastava N. Saxena A.K. Novel small molecule inhibitors of cyclin-dependent kinases as anticancer agents. Curr. Med. Chem. 2025 10.2174/0109298673331685241205180307 40468937
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673420332250618094707
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test