Skip to content
2000
Volume 32, Issue 34
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X
Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673420332250618094707
2025-06-25
2025-11-01
Loading full text...

Full text loading...

/deliver/fulltext/cmc/32/34/CMC-32-34-01.html?itemId=/content/journals/cmc/10.2174/0109298673420332250618094707&mimeType=html&fmt=ahah

References

  1. MurrayA.W. Cyclin-dependent kinases: Regulators of the cell cycle and more.Chem. Biol.19941419119510.1016/1074‑5521(94)90009‑49383389
    [Google Scholar]
  2. MorganD.O. Principles of CDK regulation.Nature1995374651813113410.1038/374131a07877684
    [Google Scholar]
  3. MalumbresM. Cyclin-dependent kinases.Genome Biol.201415612210.1186/gb418425180339
    [Google Scholar]
  4. FagundesR. TeixeiraL.K. Cyclin E/CDK2: DNA replication, replication stress and genomic instability.Front. Cell Dev. Biol.2021977484510.3389/fcell.2021.77484534901021
    [Google Scholar]
  5. De BondtH.L. RosenblattJ. JancarikJ. JonesH.D. MorganD.O. KimS.H. Crystal structure of cyclin-dependent kinase 2.Nature1993363643059560210.1038/363595a08510751
    [Google Scholar]
  6. JeffreyP.D. RussoA.A. PolyakK. GibbsE. HurwitzJ. MassaguéJ. PavletichN.P. Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex.Nature1995376653831332010.1038/376313a07630397
    [Google Scholar]
  7. RussoA.A. JeffreyP.D. PattenA.K. MassaguéJ. PavletichN.P. Crystal structure of the p27Kip1 cyclin-dependent-kinase inibitor bound to the cyclin A–Cdk2 complex.Nature1996382658932533110.1038/382325a08684460
    [Google Scholar]
  8. ZhangJ. GanY. LiH. YinJ. HeX. LinL. XuS. FangZ. KimB. GaoL. DingL. ZhangE. MaX. LiJ. LiL. XuY. HorneD. XuR. YuH. GuY. HuangW. Inhibition of the CDK2 and Cyclin A complex leads to autophagic degradation of CDK2 in cancer cells.Nat. Commun.2022131283510.1038/s41467‑022‑30264‑035595767
    [Google Scholar]
  9. De AzevedoW.F. LeclercS. MeijerL. HavlicekL. StrnadM. KimS.H. Inhibition of cyclin-dependent kinases by purine analogues: Crystal structure of human CDK2 complexed with roscovitine.Eur. J. Biochem.19972431-251852610.1111/j.1432‑1033.1997.0518a.x9030780
    [Google Scholar]
  10. MullerC. RabalO. Diaz GonzalezC. Artificial intelligence, machine learning, and deep learning in real-life drug design cases.Methods Mol. Biol.2022239038340710.1007/978‑1‑0716‑1787‑8_1634731478
    [Google Scholar]
  11. PedregosaF. VaroquauxG. GramfortA. MichelV. ThirionB. GriselO. BlondelM. PrettenhoferP. WeissR. DubourgV. VerplasJ. PassosA. CournapeauD. BrucherM. PerrotM. DuchesnayE. Scikit-learn: Machine learning in python.J. Mach. Learn. Res.20111228252830
    [Google Scholar]
  12. da SilvaA.D. Bitencourt-FerreiraG. de AzevedoW.F. Taba: A tool to analyze the binding affinity.J. Comput. Chem.2020411697310.1002/jcc.2604831410856
    [Google Scholar]
  13. de AzevedoW.F. QuirogaR. VillarrealM.A. da SilveiraN.J.F. Bitencourt-FerreiraG. da SilvaA.D. Veit-AcostaM. OliveiraP.R. TutoneM. BiziukovaN. PoroikovV. TarasovaO. BaudS. SAnDReS 2.0: Development of machine-learning models to explore the scoring function space.J. Comput. Chem.202445272333234610.1002/jcc.2744938900052
    [Google Scholar]
  14. XavierM.M. HeckG.S. AvilaM.B. LevinN.M.B. PintroV.O. CarvalhoN.L. de AzevedoW.F. SAnDReS a computational tool for statistical analysis of docking results and development of scoring functions.Comb. Chem. High Throughput Screen.2016191080181227686428
    [Google Scholar]
  15. Bitencourt-FerreiraG. de AzevedoW.F. Exploring the scoring function space.Methods Mol. Biol.2019205327528110.1007/978‑1‑4939‑9752‑7_1731452111
    [Google Scholar]
  16. Bitencourt-FerreiraG. de AzevedoW.F. Machine learning to predict binding affinity.Methods Mol. Biol.2019205325127310.1007/978‑1‑4939‑9752‑7_1631452110
    [Google Scholar]
  17. Veit-AcostaM. de AzevedoW.F. Computational prediction of binding affinity for CDK2-ligand complexes. A protein target for cancer drug discovery.Curr. Med. Chem.202229142438245510.2174/092986732866621080610581034365938
    [Google Scholar]
  18. RossG.A. MorrisG.M. BigginP.C. One size does not fit all: The limits of structure-based models in drug discovery.J. Chem. Theory Comput.2013994266427410.1021/ct400422824124403
    [Google Scholar]
  19. Bitencourt-FerreiraG. VillarrealM.A. QuirogaR. BiziukovaN. PoroikovV. TarasovaO. de AzevedoW.F. Exploring scoring function space: Developing computational models for drug discovery.Curr. Med. Chem.202431172361237710.2174/092986733066623032110373136944627
    [Google Scholar]
  20. TarasovaO. de AzevedoW.F. Cyclin dependent kinases in antiviral drug discovery.Curr. Med. Chem.202532347458747410.2174/010929867333463124120813101539931979
    [Google Scholar]
  21. CullettaG. AlmericoA.M. TutoneM. CDK2 allosteric modulators: The new route in the design of new drugs as anticancer and non-hormonal contraceptives.Curr. Med. Chem.202532347475749510.2174/010929867333120724101908510839781710
    [Google Scholar]
  22. de AzevedoW.F. Predicting inhibition of CDK2 with SAnDReS: The application of machine learning to navigate the scoring function space.Curr. Med. Chem.202532347496751110.2174/010929867331372724081907031739219431
    [Google Scholar]
  23. SrivastavaN. SaxenaA.K. Novel small molecule inhibitors of cyclin-dependent kinases as anticancer agents.Curr. Med. Chem.202532347512755310.2174/010929867333168524120518030740468937
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673420332250618094707
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test