Skip to content
2000
image of Multi-Omics and Mendelian-Randomization Investigation of Mitochondrial Genes in Irritable Bowel Syndrome

Abstract

Introduction

This study aimed to explore potential causal relationships between mitochondria-related genes and irritable bowel syndrome (IBS) using integrative multi-omics analysis.

Methods

Genome-wide association study data for IBS (1,480 cases and 454,868 controls) were integrated with mitochondrial gene data from DNA methylation quantitative trait loci, blood expression quantitative trait loci, and protein quantitative trait loci. Molecular trait associations with IBS were assessed through summary-based Mendelian randomization and co-localization analyses. Steiger filtering analysis was applied to identify causal directions, and candidate genes were independently replicated by two-sample MR in the FinnGen R11 cohort.

Results

Three primary genes supported by multi-omics evidence—, , and —were identified. Increased methylation, expression, and protein were positively associated with IBS risk, indicating pro-apoptotic and pro-inflammatory mechanisms, whereas elevated GATM expression and protein were negatively associated, consistent with a protective role creatine-mediated energy homeostasis.

Discussion

Additionally, 19 genes were classified as secondary evidence genes and 5 as tertiary evidence genes. Among these, genes such as and were validated using FinnGen data.

Conclusion

This study represents the first application of multi-omics techniques to elucidate the relationship between mitochondrial genes and IBS. The findings indicate multiple candidate pathogenic genes and highlight the role of mitochondrial dysfunction in IBS pathogenesis. These findings offer new opportunities for the discovery of IBS biomarkers and the development of therapeutic strategies.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673409785250925143312
2025-10-29
2025-12-25
Loading full text...

Full text loading...

References

  1. Ford A.C. Sperber A.D. Corsetti M. Camilleri M. Irritable bowel syndrome. Lancet 2020 396 10263 1675 1688 10.1016/S0140‑6736(20)31548‑8 33049223
    [Google Scholar]
  2. Huang K.Y. Wang F.Y. Lv M. Ma X.X. Tang X.D. Lv L. Irritable bowel syndrome: Epidemiology, overlap disorders, pathophysiology and treatment. World J. Gastroenterol. 2023 29 26 4120 4135 10.3748/wjg.v29.i26.4120 37475846
    [Google Scholar]
  3. Mayer E.A. Ryu H.J. Bhatt R.R. The neurobiology of irritable bowel syndrome. Mol. Psychiatry 2023 28 4 1451 1465 10.1038/s41380‑023‑01972‑w 36732586
    [Google Scholar]
  4. Lu Q. Tan D. Luo J. Ye Y. Zuo M. Wang S. Li C. Potential of natural products in the treatment of irritable bowel syndrome. Phytomedicine 2022 106 154419 10.1016/j.phymed.2022.154419 36087525
    [Google Scholar]
  5. Staudacher H.M. Black C.J. Teasdale S.B. Mikocka-Walus A. Keefer L. Irritable bowel syndrome and mental health comorbidity — approach to multidisciplinary management. Nat. Rev. Gastroenterol. Hepatol. 2023 20 9 582 596 10.1038/s41575‑023‑00794‑z 37268741
    [Google Scholar]
  6. Vasant D.H. Paine P.A. Black C.J. Houghton L.A. Everitt H.A. Corsetti M. Agrawal A. Aziz I. Farmer A.D. Eugenicos M.P. Moss-Morris R. Yiannakou Y. Ford A.C. British Society of Gastroenterology guidelines on the management of irritable bowel syndrome. Gut 2021 70 7 1214 1240 10.1136/gutjnl‑2021‑324598 33903147
    [Google Scholar]
  7. Camilleri M Diagnosis and treatment of irritable bowel syndrome: A review. JAMA 2021 325 9 865 877 10.1001/jama.2020.22532 33651094
    [Google Scholar]
  8. Lacy B.E. Pimentel M. Brenner D.M. Chey W.D. Keefer L.A. Long M.D. Moshiree B. ACG Clinical Guideline: Management of irritable bowel syndrome. Am. J. Gastroenterol. 2021 116 1 17 44 10.14309/ajg.0000000000001036 33315591
    [Google Scholar]
  9. Kamp K.J. Morgan H. Yoo L. Munson S.A. Heitkemper M.M. Levy R.L. Symptom management needs of patients with irritable bowel syndrome and concurrent anxiety and/or depression: A qualitative study. J. Adv. Nurs. 2023 79 2 775 788 10.1111/jan.15532 36511394
    [Google Scholar]
  10. Black C.J. Ford A.C. Global burden of irritable bowel syndrome: Trends, predictions and risk factors. Nat. Rev. Gastroenterol. Hepatol. 2020 17 8 473 486 10.1038/s41575‑020‑0286‑8 32296140
    [Google Scholar]
  11. Monzel A.S. Enríquez J.A. Picard M. Multifaceted mitochondria: Moving mitochondrial science beyond function and dysfunction. Nat. Metab. 2023 5 4 546 562 10.1038/s42255‑023‑00783‑1 37100996
    [Google Scholar]
  12. Andrieux P. Chevillard C. Cunha-Neto E. Nunes J.P.S. Mitochondria as a cellular hub in infection and inflammation. Int. J. Mol. Sci. 2021 22 21 11338 10.3390/ijms222111338 34768767
    [Google Scholar]
  13. Vringer E. Tait S.W.G. Mitochondria and cell death-associated inflammation. Cell Death Differ. 2023 30 2 304 312 10.1038/s41418‑022‑01094‑w 36447047
    [Google Scholar]
  14. Miglietta S. Borghini R. Relucenti M. Sorrentino V. Chen R. Li X. Fazi F. Donato G. Familiari G. Petrozza V. Picarelli A. New insights into intestinal permeability in irritable bowel syndrome-like disorders: Histological and ultrastructural findings of duodenal biopsies. Cells 2021 10 10 2593 10.3390/cells10102593 34685576
    [Google Scholar]
  15. Tao E. Wu Y. Hu C. Zhu Z. Ye D. Long G. Chen B. Guo R. Shu X. Zheng W. Zhang T. Jia X. Du X. Fang M. Jiang M. Early life stress induces irritable bowel syndrome from childhood to adulthood in mice. Front. Microbiol. 2023 14 1255525 10.3389/fmicb.2023.1255525 37849921
    [Google Scholar]
  16. Zhang Y. Zhang J. Duan L. The role of microbiota-mitochondria crosstalk in pathogenesis and therapy of intestinal diseases. Pharmacol. Res. 2022 186 106530 10.1016/j.phrs.2022.106530 36349593
    [Google Scholar]
  17. Lee J.Y. Cevallos S.A. Byndloss M.X. Tiffany C.R. Olsan E.E. Butler B.P. Young B.M. Rogers A.W.L. Nguyen H. Kim K. Choi S.W. Bae E. Lee J.H. Min U.G. Lee D.C. Bäumler A.J. High-Fat diet and antibiotics cooperatively impair mitochondrial bioenergetics to trigger dysbiosis that exacerbates pre-inflammatory bowel disease. Cell Host Microbe 2020 28 2 273 284.e6 10.1016/j.chom.2020.06.001 32668218
    [Google Scholar]
  18. Chimienti G. Orlando A. Lezza A.M.S. D’Attoma B. Notarnicola M. Gigante I. Pesce V. Russo F. The ketogenic diet reduces the harmful effects of stress on gut mitochondrial biogenesis in a rat model of irritable bowel syndrome. Int. J. Mol. Sci. 2021 22 7 3498 10.3390/ijms22073498 33800646
    [Google Scholar]
  19. Hao W. Cha R. Wang M. Li J. Guo H. Du R. Zhou F. Jiang X. Ligand-Modified gold nanoparticles as mitochondrial modulators: Regulation of intestinal barrier and therapy for constipation. ACS Nano 2023 17 14 13377 13392 10.1021/acsnano.3c01656 37449942
    [Google Scholar]
  20. Yao C. Zhang Y. Lu P. Xiao B. Sun P. Tao J. Cheng Y. Kong L. Xu D. Fang M. Exploring the bidirectional relationship between pain and mental disorders: A comprehensive Mendelian randomization study. J. Headache Pain 2023 24 1 82 10.1186/s10194‑023‑01612‑2 37415130
    [Google Scholar]
  21. Zhu Z. Zhang F. Hu H. Bakshi A. Robinson M.R. Powell J.E. Montgomery G.W. Goddard M.E. Wray N.R. Visscher P.M. Yang J. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat. Genet. 2016 48 5 481 487 10.1038/ng.3538 27019110
    [Google Scholar]
  22. McRae A.F. Marioni R.E. Shah S. Yang J. Powell J.E. Harris S.E. Gibson J. Henders A.K. Bowdler L. Painter J.N. Murphy L. Martin N.G. Starr J.M. Wray N.R. Deary I.J. Visscher P.M. Montgomery G.W. Identification of 55,000 replicated DNA methylation QTL. Sci. Rep. 2018 8 1 17605 10.1038/s41598‑018‑35871‑w 30514905
    [Google Scholar]
  23. Rath S. Sharma R. Gupta R. Ast T. Chan C. Durham T.J. Goodman R.P. Grabarek Z. Haas M.E. Hung W.H.W. Joshi P.R. Jourdain A.A. Kim S.H. Kotrys A.V. Lam S.S. McCoy J.G. Meisel J.D. Miranda M. Panda A. Patgiri A. Rogers R. Sadre S. Shah H. Skinner O.S. To T.L. Walker M.A. Wang H. Ward P.S. Wengrod J. Yuan C.C. Calvo S.E. Mootha V.K. MitoCarta3.0: An updated mitochondrial proteome now with sub-organelle localization and pathway annotations. Nucleic Acids Res. 2021 49 D1 D1541 D1547 10.1093/nar/gkaa1011 33174596
    [Google Scholar]
  24. Ferkingstad E. Sulem P. Atlason B.A. Sveinbjornsson G. Magnusson M.I. Styrmisdottir E.L. Gunnarsdottir K. Helgason A. Oddsson A. Halldorsson B.V. Jensson B.O. Zink F. Halldorsson G.H. Masson G. Arnadottir G.A. Katrinardottir H. Juliusson K. Magnusson M.K. Magnusson O.T. Fridriksdottir R. Saevarsdottir S. Gudjonsson S.A. Stacey S.N. Rognvaldsson S. Eiriksdottir T. Olafsdottir T.A. Steinthorsdottir V. Tragante V. Ulfarsson M.O. Stefansson H. Jonsdottir I. Holm H. Rafnar T. Melsted P. Saemundsdottir J. Norddahl G.L. Lund S.H. Gudbjartsson D.F. Thorsteinsdottir U. Stefansson K. Large-scale integration of the plasma proteome with genetics and disease. Nat. Genet. 2021 53 12 1712 1721 10.1038/s41588‑021‑00978‑w 34857953
    [Google Scholar]
  25. Sollis E. Mosaku A. Abid A. Buniello A. Cerezo M. Gil L. Groza T. Güneş O. Hall P. Hayhurst J. Ibrahim A. Ji Y. John S. Lewis E. MacArthur J.A.L. McMahon A. Osumi-Sutherland D. Panoutsopoulou K. Pendlington Z. Ramachandran S. Stefancsik R. Stewart J. Whetzel P. Wilson R. Hindorff L. Cunningham F. Lambert S.A. Inouye M. Parkinson H. Harris L.W. The NHGRI-EBI GWAS Catalog: Knowledgebase and deposition resource. Nucleic Acids Res. 2023 51 D1 D977 D985 10.1093/nar/gkac1010 36350656
    [Google Scholar]
  26. Enck P. Aziz Q. Barbara G. Farmer A.D. Fukudo S. Mayer E.A. Niesler B. Quigley E.M.M. Rajilić-Stojanović M. Schemann M. Schwille-Kiuntke J. Simren M. Zipfel S. Spiller R.C. Irritable bowel syndrome. Nat. Rev. Dis. Primers 2016 2 1 16014 10.1038/nrdp.2016.14 27159638
    [Google Scholar]
  27. Li X. Liang Z. Causal effect of gut microbiota on pancreatic cancer: A Mendelian randomization and colocalization study. J. Cell. Mol. Med. 2024 28 8 e18255 10.1111/jcmm.18255 38526030
    [Google Scholar]
  28. Ghoshal U.C. Marshall and Warren Lecture 2019: A paradigm shift in pathophysiological basis of irritable bowel syndrome and its implication on treatment. J. Gastroenterol. Hepatol. 2020 35 5 712 721 10.1111/jgh.15032 32162356
    [Google Scholar]
  29. Camilleri M. Lasch K. Zhou W. Irritable Bowel Syndrome: Methods, Mechanisms, and Pathophysiology. The confluence of increased permeability, inflammation, and pain in irritable bowel syndrome. Am. J. Physiol. Gastrointest. Liver Physiol. 2012 303 7 G775 G785 10.1152/ajpgi.00155.2012 22837345
    [Google Scholar]
  30. Paquay S. Duraffourd J. Bury M. Heremans I.P. Caligiore F. Gerin I. Stroobant V. Jacobs J. Pinon A. Graff J. Vertommen D. Van Schaftingen E. Dewulf J.P. Bommer G.T. ACAD10 and ACAD11 allow entry of 4-hydroxy fatty acids into β-oxidation. Cell. Mol. Life Sci. 2024 81 1 367 10.1007/s00018‑024‑05397‑8 39174697
    [Google Scholar]
  31. He M. Pei Z. Mohsen A.W. Watkins P. Murdoch G. Van Veldhoven P.P. Ensenauer R. Vockley J. Identification and characterization of new long chain Acyl-CoA dehydrogenases. Mol. Genet. Metab. 2011 102 4 418 429 10.1016/j.ymgme.2010.12.005 21237683
    [Google Scholar]
  32. Narayanan B. Xia C. McAndrew R. Shen A.L. Kim J.J.P. Structural basis for expanded substrate specificities of human long chain acyl-CoA dehydrogenase and related acyl-CoA dehydrogenases. Sci. Rep. 2024 14 1 12976 10.1038/s41598‑024‑63027‑6 38839792
    [Google Scholar]
  33. Nelson D. L. Cox M. Principles of Biochemistry. 8th edition W. H. Freeman 2021 1319322344 9781319322342 1214
    [Google Scholar]
  34. Shekhawat P.S. Srinivas S.R. Matern D. Bennett M.J. Boriack R. George V. Xu H. Prasad P.D. Roon P. Ganapathy V. Spontaneous development of intestinal and colonic atrophy and inflammation in the carnitine-deficient jvs (OCTN2−/−) mice. Mol. Genet. Metab. 2007 92 4 315 324 10.1016/j.ymgme.2007.08.002 17884651
    [Google Scholar]
  35. Sánchez-Álvarez A. Ruíz-López N. Moreno-Pérez A.J. Venegas-Calerón M. Martínez-Force E. Garcés R. Salas J.J. Metabolism and accumulation of hydroxylated fatty acids by castor (Ricinus comunis) seed microsomes. Plant Physiol. Biochem. 2022 170 266 274 10.1016/j.plaphy.2021.12.010 34929430
    [Google Scholar]
  36. Saeki R. Yoshinaga K. Tago A. Tanaka S. Yoshinaga-Kiriake A. Nagai T. Yoshida A. Gotoh N. Quantitative analysis of lactone enantiomers in butter and margarine through the combination of solvent extraction and enantioselective gas chromatography–mass spectrometry. J. Agric. Food Chem. 2022 70 18 5756 5763 10.1021/acs.jafc.2c01480 35482605
    [Google Scholar]
  37. Miyamoto J. Mizukure T. Park S.B. Kishino S. Kimura I. Hirano K. Bergamo P. Rossi M. Suzuki T. Arita M. Ogawa J. Tanabe S. A gut microbial metabolite of linoleic acid, 10-hydroxy-cis-12-octadecenoic acid, ameliorates intestinal epithelial barrier impairment partially via GPR40-MEK-ERK pathway. J. Biol. Chem. 2015 290 5 2902 2918 10.1074/jbc.M114.610733 25505251
    [Google Scholar]
  38. Roediger W.E.W. Nance S. Selective reduction of fatty acid oxidation in colonocytes: Correlation with ulcerative colitis. Lipids 1990 25 10 646 652 10.1007/BF02536016 2127822
    [Google Scholar]
  39. Roediger W.E. Nance S. Metabolic induction of experimental ulcerative colitis by inhibition of fatty acid oxidation. Br. J. Exp. Pathol. 1986 67 6 773 782 3099821
    [Google Scholar]
  40. Yavorov-Dayliev D. Milagro F.I. López-Yoldi M. Clemente I. Riezu-Boj J.I. Ayo J. Oneca M. Aranaz P. Pediococcus acidilactici (pA1c®) alleviates obesity-related dyslipidemia and inflammation in Wistar rats by activating beta-oxidation and modulating the gut microbiota. Food Funct. 2023 14 24 10855 10867 10.1039/D3FO01651J 37987083
    [Google Scholar]
  41. Bloom K. Karunanidhi A. Tobita K. Hoppel C. Thiels E. Peet E. Wang Y. Basu S. Vockley J. ACAD10 protein expression and Neurobehavioral assessment of Acad10-deficient mice. PLoS One 2020 15 12 e0242445 10.1371/journal.pone.0242445 33301490
    [Google Scholar]
  42. Huang Y. Zheng E. Hu M. Yang X. Lan Q. Yu Y. Xu B. The impact of depression-mediated gut microbiota composition on Irritable Bowel Syndrome: A Mendelian study. J. Affect. Disord. 2024 360 15 25 10.1016/j.jad.2024.05.119 38801922
    [Google Scholar]
  43. Cheung S.G. Goldenthal A.R. Uhlemann A.C. Mann J.J. Miller J.M. Sublette M.E. Systematic review of gut microbiota and major depression. Front. Psychiatry 2019 10 34 10.3389/fpsyt.2019.00034 30804820
    [Google Scholar]
  44. Jones P.A. Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 2012 13 7 484 492 10.1038/nrg3230 22641018
    [Google Scholar]
  45. Eskandari E. Negri G.L. Tan S. MacAldaz M.E. Ding S. Long J. Nielsen K. Spencer S.E. Morin G.B. Eaves C.J. Dependence of human cell survival and proliferation on the CASP3 prodomain. Cell Death Discov. 2024 10 1 63 10.1038/s41420‑024‑01826‑6 38321033
    [Google Scholar]
  46. Grabert K. Engskog-Vlachos P. Škandík M. Vazquez- Cabrera G. Murgoci A.N. Keane L. Gaetani M. Joseph B. Cheray M. Proteome integral solubility alteration high-throughput proteomics assay identifies Collectin-12 as a non-apoptotic microglial caspase-3 substrate. Cell Death Dis. 2023 14 3 192 10.1038/s41419‑023‑05714‑2 36906641
    [Google Scholar]
  47. Otani S. Oami T. Yoseph B.P. Klingensmith N.J. Chen C. Liang Z. Coopersmith C.M. Overexpression of BCL-2 in the intestinal epithelium prevents sepsis-induced gut barrier dysfunction via altering tight junction protein expression. Shock 2020 54 3 330 336 10.1097/SHK.0000000000001463 31626040
    [Google Scholar]
  48. Su L. Nalle S.C. Shen L. Turner E.S. Singh G. Breskin L.A. Khramtsova E.A. Khramtsova G. Tsai P.Y. Fu Y.X. Abraham C. Turner J.R. TNFR2 activates MLCK-dependent tight junction dysregulation to cause apoptosis-mediated barrier loss and experimental colitis. Gastroenterology 2013 145 2 407 415 10.1053/j.gastro.2013.04.011 23619146
    [Google Scholar]
  49. Zhang X. Chen X. Bai T. Meng X. Wu Y. Yang A. Chen H. Li X. Egg white diet induces severe allergic enteritis in an animal model driven by caspase-3 and gasdermin c-mediated mucosal alarmin secretion. J. Agric. Food Chem. 2024 72 43 24035 24045 10.1021/acs.jafc.4c06967 39420749
    [Google Scholar]
  50. Brinkman B.M. Becker A. Ayiseh R.B. Hildebrand F. Raes J. Huys G. Vandenabeele P. Gut microbiota affects sensitivity to acute DSS-induced colitis independently of host genotype. Inflamm. Bowel Dis. 2013 19 12 2560 2567 10.1097/MIB.0b013e3182a8759a 24105395
    [Google Scholar]
  51. Wright D.P. Rosendale D.I. Roberton A.M. Prevotella enzymes involved in mucin oligosaccharide degradation and evidence for a small operon of genes expressed during growth on mucin. FEMS Microbiol. Lett. 2000 190 1 73 79 10.1111/j.1574‑6968.2000.tb09265.x 10981693
    [Google Scholar]
  52. Wyss M. Kaddurah-Daouk R. Creatine and creatinine metabolism. Physiol. Rev. 2000 80 3 1107 1213 10.1152/physrev.2000.80.3.1107 10893433
    [Google Scholar]
  53. Turer E. McAlpine W. Wang K. Lu T. Li X. Tang M. Zhan X. Wang T. Zhan X. Bu C.H. Murray A.R. Beutler B. Creatine maintains intestinal homeostasis and protects against colitis. Proc. Natl. Acad. Sci. USA 2017 114 7 E1273 E1281 10.1073/pnas.1621400114 28137860
    [Google Scholar]
  54. Chen J. Ruan X. Sun Y. Li X. Yuan S. Larsson S.C. Plasma phospholipid arachidonic acid in relation to non-alcoholic fatty liver disease: Mendelian randomization study. Nutrition 2023 106 111910 10.1016/j.nut.2022.111910 36459845
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673409785250925143312
Loading
/content/journals/cmc/10.2174/0109298673409785250925143312
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test