Skip to content
2000
image of 8-Hydroxyquinoline Derivatives as Drug Candidates for the Treatment of Alzheimer's Disease

Abstract

Alzheimer's disease (AD) is the most prevalent form of dementia among older adults worldwide. Amidst several hypotheses to explain the pathobiology of the disease are biochemical indicators such as β-amyloid (Aβ) plaques; neurofibrillary tangles, caused by hyperphosphorylated tau protein; oxidative stress; metal dyshomeostasis; low levels of acetylcholine, and neuroinflammation. Considering the multifactorial nature of AD, there has been an increase in research for novel multitarget compounds, mainly utilizing molecular hybridization for drug design. In this review, we focus on the 8-hydroxyquinoline moiety, a privileged metal-binding agent with Aβ antiaggregating properties, and its derivatives, aiming to have an effect on multiple molecular targets. Furthermore, the most prominent structure-activity relationships found on the analyzed compounds, along with the most promising strategies explored by researchers, are discussed. That way, we hope to provide a comprehensive perspective on the development of anti-Alzheimer agents based on the 8-hydroxyquinoline moiety in the last decade.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673409645250823055140
2025-10-01
2025-11-06
Loading full text...

Full text loading...

/deliver/fulltext/cmc/10.2174/0109298673409645250823055140/BMS-CMC-2025-402.html?itemId=/content/journals/cmc/10.2174/0109298673409645250823055140&mimeType=html&fmt=ahah

References

  1. World Health Organization Dementia. Available from:https://www.who.int/news-room/fact-sheets/detail/dementia#:~:text=Dementia%20is%20a%20syndrome%20that,usual%20consequences%20of%20biological%20ageing.
  2. Sereniki A. Vital M.A.B.F. Alzheimer’s disease: Pathophysiological and pharmacological features. Rev. Psiquiatr. Rio. Gd. Sul 2008 30 1 Suppl.
    [Google Scholar]
  3. Reis S.P. Marques M.L.D.G. Marques C.C.D.G. Diagnóstico e tratamento da doença de alzheimer / Diagnosis and treatment of alzheimer’s disease. J. Brazil. Health. Review. 2022 5 2 5951 5963 10.34119/bjhrv5n2‑172
    [Google Scholar]
  4. Prince M. Bryce R. Albanese E. Wimo A. Ribeiro W. Ferri C.P. The global prevalence of dementia: A systematic review and metaanalysis. Alzheimers Dement. 2013 9 1 63 75.e2 10.1016/j.jalz.2012.11.007 23305823
    [Google Scholar]
  5. Finder V.H. Alzheimer’s disease: A general introduction and pathomechanism. J. Alzheimers Dis. 2010 22 s3)(Suppl.3 S5 S19 10.3233/JAD‑2010‑100975 20858960
    [Google Scholar]
  6. Santos M.A. Chand K. Chaves S. Recent progress in multifunctional metal chelators as potential drugs for Alzheimer’s disease. Coord. Chem. Rev. 2016 327-328 287 303 10.1016/j.ccr.2016.04.013
    [Google Scholar]
  7. Sabuncu M.R. Desikan R.S. Sepulcre J. Yeo B.T.T. Liu H. Schmansky N.J. Reuter M. Alzheimer’s Disease Neuroimaging Initiative. The dynamics of cortical and hippocampal atrophy in Alzheimer’s disease. Arch. Neurol. 2011 68 8 1040 1048 10.1001/archneurol.2011.167 21825241
    [Google Scholar]
  8. Reiss A.B. Arain H.A. Stecker M.M. Siegart N.M. Kasselman L.J. Amyloid toxicity in Alzheimer’s disease. Rev. Neurosci. 2018 29 6 613 627 10.1515/revneuro‑2017‑0063 29447116
    [Google Scholar]
  9. Muralidar S. Ambi S.V. Sekaran S. Thirumalai D. Palaniappan B. Role of tau protein in Alzheimer’s disease: The prime pathological player. Int. J. Biol. Macromol. 2020 163 1599 1617 10.1016/j.ijbiomac.2020.07.327 32784025
    [Google Scholar]
  10. Bai R. Guo J. Ye X.Y. Xie Y. Xie T. Oxidative stress: The core pathogenesis and mechanism of Alzheimer’s disease. Ageing Res. Rev. 2022 77 101619 10.1016/j.arr.2022.101619 35395415
    [Google Scholar]
  11. Fasae K.D. Abolaji A.O. Faloye T.R. Odunsi A.Y. Oyetayo B.O. Enya J.I. Rotimi J.A. Akinyemi R.O. Whitworth A.J. Aschner M. Metallobiology and therapeutic chelation of biometals (copper, zinc and iron) in Alzheimer’s disease: Limitations, and current and future perspectives. J. Trace Elem. Med. Biol. 2021 67 126779 10.1016/j.jtemb.2021.126779 34034029
    [Google Scholar]
  12. Chen Z.R. Huang J.B. Yang S.L. Hong F.F. Role of cholinergic signaling in Alzheimer’s disease. Molecules 2022 27 6 1816 1839 10.3390/molecules27061816 35335180
    [Google Scholar]
  13. Falco A.D. Cukierman D.S. Hauser-Davis R.A. Rey M.A. Alzheimer’s disease: Etiological hypotheses and treatment perspectives. Quim. Nova 2016 39 1 63 80
    [Google Scholar]
  14. Se Thoe E. Fauzi A. Tang Y.Q. Chamyuang S. Chia A.Y.Y. A review on advances of treatment modalities for Alzheimer’s disease. Life Sci. 2021 276 119129 10.1016/j.lfs.2021.119129 33515559
    [Google Scholar]
  15. Prachayasittikul V. Prachayasittikul V. Prachayasittikul S. Ruchirawat S. 8-Hydroxyquinolines: A review of their metal chelating properties and medicinal applications. Drug Des. Devel. Ther. 2013 7 1157 1178 10.2147/DDDT.S49763 24115839
    [Google Scholar]
  16. Gupta R. Luxami V. Paul K. Insights of 8-hydroxyquinolines: A novel target in medicinal chemistry. Bioorg. Chem. 2021 108 104633 10.1016/j.bioorg.2021.104633 33513476
    [Google Scholar]
  17. Deraeve C. Boldron C. Maraval A. Mazarguil H. Gornitzka H. Vendier L. Pitié M. Meunier B. Preparation and study of new poly-8-hydroxyquinoline chelators for an anti-Alzheimer strategy. Chemistry 2008 14 2 682 696 10.1002/chem.200701024 17969218
    [Google Scholar]
  18. Cahoon L. The curious case of clioquinol. Nat. Med. 2009 15 4 356 359 10.1038/nm0409‑356 19350001
    [Google Scholar]
  19. Bareggi S.R. Cornelli U. Clioquinol: Review of its mechanisms of action and clinical uses in neurodegenerative disorders. CNS Neurosci. Ther. 2012 18 1 41 46 10.1111/j.1755‑5949.2010.00231.x 21199452
    [Google Scholar]
  20. Budimir A. Humbert N. Elhabiri M. Osinska I. Biruš M. Albrecht-Gary A.M. Hydroxyquinoline based binders: Promising ligands for chelatotherapy? J. Inorg. Biochem. 2011 105 3 490 496 10.1016/j.jinorgbio.2010.08.014 20926137
    [Google Scholar]
  21. Oliveri V. Vecchio G. 8-Hydroxyquinolines in medicinal chemistry: A structural perspective. Eur. J. Med. Chem. 2016 120 252 274 10.1016/j.ejmech.2016.05.007 27191619
    [Google Scholar]
  22. Grossi C. Francese S. Casini A. Rosi M.C. Luccarini I. Fiorentini A. Gabbiani C. Messori L. Moneti G. Casamenti F. Clioquinol decreases amyloid-β burden and reduces working memory impairment in a transgenic mouse model of Alzheimer’s disease. J. Alzheimers Dis. 2009 17 2 423 440 10.3233/JAD‑2009‑1063 19363260
    [Google Scholar]
  23. Ritchie C.W. Bush A.I. Mackinnon A. Macfarlane S. Mastwyk M. MacGregor L. Kiers L. Cherny R. Li Q.X. Tammer A. Carrington D. Mavros C. Volitakis I. Xilinas M. Ames D. Davis S. Beyreuther K. Tanzi R.E. Masters C.L. Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting Abeta amyloid deposition and toxicity in Alzheimer disease: A pilot phase 2 clinical trial. Arch. Neurol. 2003 60 12 1685 1691 10.1001/archneur.60.12.1685 14676042
    [Google Scholar]
  24. Lannfelt L. Blennow K. Zetterberg H. Batsman S. Ames D. Harrison J. Masters C.L. Targum S. Bush A.I. Murdoch R. Wilson J. Ritchie C.W. PBT2-201-EURO study group Safety, efficacy, and biomarker findings of PBT2 in targeting Aβ as a modifying therapy for Alzheimer’s disease: a phase IIa, double-blind, randomised, placebo-controlled trial. Lancet Neurol. 2008 7 9 779 786 10.1016/S1474‑4422(08)70167‑4 18672400
    [Google Scholar]
  25. Selkoe D.J. Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med. 2016 8 6 595 608 10.15252/emmm.201606210 27025652
    [Google Scholar]
  26. Shoji M. Golde T.E. Ghiso J. Cheung T.T. Estus S. Shaffer L.M. Cai X.D. McKay D.M. Tintner R. Frangione B. Younkin S.G. Production of the Alzheimer amyloid beta protein by normal proteolytic processing. Science 1992 258 5079 126 129 10.1126/science.1439760 1439760
    [Google Scholar]
  27. Volicer L. Physiological and pathological functions of beta-amyloid in the brain and Alzheimer’s disease: A review. Chin. J. Physiol. 2020 63 3 95 100 10.4103/CJP.CJP_10_20 32594062
    [Google Scholar]
  28. Liu F. Zhang Z. Zhang L. Meng R.N. Gao J. Jin M. Li M. Wang X.P. Effect of metal ions on Alzheimer’s disease. Brain Behav. 2022 12 3 e2527 10.1002/brb3.2527 35212185
    [Google Scholar]
  29. Tönnies E. Trushina E. Oxidative stress, synaptic dysfunction, and Alzheimer’s Disease. J. Alzheimers Dis. 2017 57 4 1105 1121 10.3233/JAD‑161088 28059794
    [Google Scholar]
  30. Beal M.F. Oxidative damage as an early marker of Alzheimer’s disease and mild cognitive impairment. Neurobiol. Aging 2005 26 5 585 586 10.1016/j.neurobiolaging.2004.09.022 15708432
    [Google Scholar]
  31. Arrigoni F. Prosdocimi T. Mollica L. De Gioia L. Zampella G. Bertini L. Copper reduction and dioxygen activation in Cu–amyloid beta peptide complexes: insight from molecular modelling. Metallomics 2018 10 11 1618 1630 10.1039/C8MT00216A 30345437
    [Google Scholar]
  32. Huang X. Atwood C.S. Hartshorn M.A. Multhaup G. Goldstein L.E. Scarpa R.C. Cuajungco M.P. Gray D.N. Lim J. Moir R.D. Tanzi R.E. Bush A.I. The A β peptide of Alzheimer’s disease directly produces hydrogen peroxide through metal ion reduction. Biochemistry 1999 38 24 7609 7616 10.1021/bi990438f 10386999
    [Google Scholar]
  33. Kochi A. Lee H. Vithanarachchi S. Padmini V. Allen M. Lim M. Inhibitory activity of curcumin derivatives towards metal-free and metal-induced amyloid-β aggregation. Curr. Alzheimer. Res. 2015 12 5 415 423 10.2174/1567205012666150504150125 25938870
    [Google Scholar]
  34. Bartus R.T. Dean R.L. III Beer B. Lippa A.S. The cholinergic hypothesis of geriatric memory dysfunction. Science 1982 217 4558 408 414 10.1126/science.7046051 7046051
    [Google Scholar]
  35. Contestabile A. The history of the cholinergic hypothesis. Behav. Brain Res. 2011 221 2 334 340 10.1016/j.bbr.2009.12.044 20060018
    [Google Scholar]
  36. Knez D. Coquelle N. Pišlar A. Žakelj S. Jukič M. Sova M. Mravljak J. Nachon F. Brazzolotto X. Kos J. Colletier J.P. Gobec S. Multi-target-directed ligands for treating Alzheimer’s disease: Butyrylcholinesterase inhibitors displaying antioxidant and neuroprotective activities. Eur. J. Med. Chem. 2018 156 598 617 10.1016/j.ejmech.2018.07.033 30031971
    [Google Scholar]
  37. Hampel H. Mesulam M.M. Cuello A.C. Farlow M.R. Giacobini E. Grossberg G.T. Khachaturian A.S. Vergallo A. Cavedo E. Snyder P.J. Khachaturian Z.S. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain 2018 141 7 1917 1933 10.1093/brain/awy132 29850777
    [Google Scholar]
  38. Zhou S. Huang G. The biological activities of butyrylcholinesterase inhibitors. Biomed. Pharmacother. 2022 146 112556 10.1016/j.biopha.2021.112556 34953393
    [Google Scholar]
  39. Goulart P.N. Caruso L. Nadur N.F. Franco D.P. Kümmerle A.E. Lacerda R.B. Butyrylcholinesterase - BuChE: A potential target for development of drugs for Alzheimer’s Disease treatment. Rev. Virtual Quim. 2021 13 1 90 126 10.21577/1984‑6835.20200133
    [Google Scholar]
  40. Darvesh S. Butyrylcholinesterase as a diagnostic and therapeutic target for Alzheimer’s disease. Curr. Alzheimer Res. 2016 13 10 1173 1177 10.2174/1567205013666160404120542 27040140
    [Google Scholar]
  41. Ciro A. Park J. Burkhard G. Yan N. Geula C. Biochemical differentiation of cholinesterases from normal and Alzheimer’s disease cortex. Curr. Alzheimer Res. 2012 9 1 138 143 10.2174/156720512799015127 21244353
    [Google Scholar]
  42. Schedin-Weiss S. Inoue M. Hromadkova L. Teranishi Y. Yamamoto N.G. Wiehager B. Bogdanovic N. Winblad B. Sandebring-Matton A. Frykman S. Tjernberg L.O. Monoamine oxidase B is elevated in Alzheimer disease neurons, is associated with γ-secretase and regulates neuronal amyloid β-peptide levels. Alzheimers Res. Ther. 2017 9 1 57 10.1186/s13195‑017‑0279‑1 28764767
    [Google Scholar]
  43. Nordberg A. Ballard C. Bullock R. Darreh-Shori T. Somogyi M. A Review of Butyrylcholinesterase as a Therapeutic Target in the Treatment of Alzheimer's Disease. Prim. Care. Companion. CNS Disord. 2013 15 2 10.4088/PCC.12r01412
    [Google Scholar]
  44. Bhawna Kumar A. Bhatia M. Kapoor A. Kumar P. Kumar S. Monoamine oxidase inhibitors: A concise review with special emphasis on structure activity relationship studies. Eur. J. Med. Chem. 2022 242 114655 10.1016/j.ejmech.2022.114655 36037788
    [Google Scholar]
  45. Edmondson D.E. DeColibus L. Binda C. Li M. Mattevi A. New insights into the structures and functions of human monoamine oxidases A and B. J. Neural Transm. 2007 114 6 703 705 10.1007/s00702‑007‑0674‑z 17393064
    [Google Scholar]
  46. Behl T. Kaur D. Sehgal A. Singh S. Sharma N. Zengin G. Andronie-Cioara F.L. Toma M.M. Bungau S. Bumbu A.G. Role of monoamine oxidase activity in Alzheimer’s disease: An insight into the therapeutic potential of inhibitors. Molecules 2021 26 12 3724 10.3390/molecules26123724 34207264
    [Google Scholar]
  47. Tripathi R.K.P. Ayyannan S.R. Monoamine oxidase-B inhibitors as potential neurotherapeutic agents: An overview and update. Med. Res. Rev. 2019 39 5 1603 1706 10.1002/med.21561 30604512
    [Google Scholar]
  48. Wang L. Esteban G. Ojima M. Bautista-Aguilera O.M. Inokuchi T. Moraleda I. Iriepa I. Samadi A. Youdim M.B.H. Romero A. Soriano E. Herrero R. Fernández Fernández A.P. Ricardo-Martínez-Murillo Marco-Contelles J. Unzeta M. Donepezil + propargylamine + 8-hydroxyquinoline hybrids as new multifunctional metal-chelators, ChE and MAO inhibitors for the potential treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2014 80 543 561 10.1016/j.ejmech.2014.04.078 24813882
    [Google Scholar]
  49. Gökhan-Kelekçi N. Yabanoğlu S. Küpeli E. Salgın U. Özgen Ö. Uçar G. Yeşilada E. Kendi E. Yeşilada A. Bilgin A.A. A new therapeutic approach in Alzheimer disease: Some novel pyrazole derivatives as dual MAO-B inhibitors and antiinflammatory analgesics. Bioorg. Med. Chem. 2007 15 17 5775 5786 10.1016/j.bmc.2007.06.004 17611112
    [Google Scholar]
  50. AdisInsight. Available from: https://adisinsight.springer.com/drugs/800080640 (Accessed June 17, 2025).
    [Google Scholar]
  51. Hu J. Pan T. An B. Li Z. Li X. Huang L. Synthesis and evaluation of clioquinol-rolipram/roflumilast hybrids as multitarget-directed ligands for the treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2019 163 512 526 10.1016/j.ejmech.2018.12.013 30553143
    [Google Scholar]
  52. Silva A.J. Kogan J.H. Frankland P.W. Kida S. CREB and memory. Annu. Rev. Neurosci. 1998 21 1 127 148 10.1146/annurev.neuro.21.1.127 9530494
    [Google Scholar]
  53. Wang Z. Cao M. Xiang H. Wang W. Feng X. Yang X. WBQ5187, a multitarget directed agent, ameliorates cognitive impairment in a transgenic mouse model of Alzheimer’s disease and modulates cerebral β-amyloid, gliosis, cAMP levels, and neurodegeneration. ACS Chem. Neurosci. 2019 10 12 4787 4799 10.1021/acschemneuro.9b00409 31697472
    [Google Scholar]
  54. Sanders O. Rajagopal L. Phosphodiesterase inhibitors for Alzheimer’s disease: A systematic review of clinical trials and epidemiology with a mechanistic rationale. J. Alzheimers Dis. Rep. 2020 4 1 185 215 10.3233/ADR‑200191 32715279
    [Google Scholar]
  55. Turk V. Stoka V. Vasiljeva O. Renko M. Sun T. Turk B. Turk D. Cysteine cathepsins: From structure, function and regulation to new frontiers. Biochim. Biophys. Acta. Proteins Proteomics 2012 1824 1 68 88 10.1016/j.bbapap.2011.10.002 22024571
    [Google Scholar]
  56. Biasizzo M. Javoršek U. Vidak E. Zarić M. Turk B. Cysteine cathepsins: A long and winding road towards clinics. Mol. Aspects Med. 2022 88 101150 10.1016/j.mam.2022.101150 36283280
    [Google Scholar]
  57. Hook V. Yoon M. Mosier C. Ito G. Podvin S. Head B.P. Rissman R. O’Donoghue A.J. Hook G. Cathepsin B in neurodegeneration of Alzheimer’s disease, traumatic brain injury, and related brain disorders. Biochim. Biophys. Acta. Proteins Proteomics 2020 1868 8 140428 10.1016/j.bbapap.2020.140428 32305689
    [Google Scholar]
  58. Boland B. Campbell V. Aβ-mediated activation of the apoptotic cascade in cultured cortical neurones: a role for cathepsin-L. Neurobiol. Aging 2004 25 1 83 91 10.1016/S0197‑4580(03)00034‑4 14675734
    [Google Scholar]
  59. Yamashima T. Reconsider Alzheimer’s disease by the ‘calpain–cathepsin hypothesis’—A perspective review. Prog. Neurobiol. 2013 105 1 23 10.1016/j.pneurobio.2013.02.004 23499711
    [Google Scholar]
  60. Yamashima T. Can ‘calpain-cathepsin hypothesis’ explain Alzheimer neuronal death? Ageing Res. Rev. 2016 32 169 179 10.1016/j.arr.2016.05.008 27306474
    [Google Scholar]
  61. Wang Z. Wang Y. Li W. Liu Z. Luo Z. Sun Y. Wu R. Huang L. Li X. Computer-assisted designed “selenoxy–chinolin”: A new catalytic mechanism of the GPx- like cycle and inhibition of metal-free and metal-associated Aβ aggregation. Dalton Trans. 2015 44 48 20913 20925 10.1039/C5DT02130H 26575390
    [Google Scholar]
  62. Wang B. Wang Z. Chen H. Lu C.J. Li X. Synthesis and evaluation of 8-hydroxyquinolin derivatives substituted with (benzo[d][1,2]selenazol-3(2H)-one) as effective inhibitor of metal-induced Aβ aggregation and antioxidant. Bioorg. Med. Chem. 2016 24 19 4741 4749 10.1016/j.bmc.2016.08.017 27567080
    [Google Scholar]
  63. Wang Z. Hu J. Yang X. Feng X. Li X. Huang L. Chan A.S.C. Design, Synthesis, and evaluation of orally bioavailable quinoline–indole derivatives as innovative multitarget-directed ligands: promotion of cell proliferation in the adult murine hippocampus for the treatment of Alzheimer’s disease. J. Med. Chem. 2018 61 5 1871 1894 10.1021/acs.jmedchem.7b01417 29420891
    [Google Scholar]
  64. Bowroju S.K. Mainali N. Ayyadevara S. Penthala N.R. Krishnamachari S. Kakraba S. Reis R.J.S. Crooks P.A. Design and synthesis of novel hybrid 8-hydroxy quinoline-indole derivatives as inhibitors of aβ self-aggregation and metal chelation-induced aβ aggregation. Molecules 2020 25 16 3610 3629 10.3390/molecules25163610 32784464
    [Google Scholar]
  65. Wang Z. Wang Y. Wang B. Li W. Huang L. Li X. Design, synthesis, and evaluation of orally available clioquinol-moracin m hybrids as multitarget-directed ligands for cognitive improvement in a rat model of neurodegeneration in Alzheimer’s disease. J. Med. Chem. 2015 58 21 8616 8637 10.1021/acs.jmedchem.5b01222 26473791
    [Google Scholar]
  66. Prati F. Bergamini C. Fato R. Soukup O. Korabecny J. Andrisano V. Bartolini M. Bolognesi M.L. Novel 8-hydroxyquinoline derivatives as multitarget compounds for the treatment of Alzheimer′s disease. ChemMedChem 2016 11 12 1284 1295 10.1002/cmdc.201600014 26880501
    [Google Scholar]
  67. Yang X. Cai P. Liu Q. Wu J. Yin Y. Wang X. Kong L. Novel 8-hydroxyquinoline derivatives targeting β-amyloid aggregation, metal chelation and oxidative stress against Alzheimer’s disease. Bioorg. Med. Chem. 2018 26 12 3191 3201 10.1016/j.bmc.2018.04.043 29729985
    [Google Scholar]
  68. Abdelsayed S. Ha Duong N.T. Bureau C. Michel P.P. Hirsch E.C. El Hage Chahine J.M. Serradji N. Piperazine derivatives as iron chelators: A potential application in neurobiology. Biometals 2015 28 6 1043 1061 10.1007/s10534‑015‑9889‑x 26502356
    [Google Scholar]
  69. Fu C.L. Hsu L.S. Liao Y.F. Hu M.K. New hydroxyquinoline-based derivatives as potent modulators of amyloid-β aggregations. Arch. Pharm. 2016 349 5 327 341 10.1002/ardp.201500453 27027880
    [Google Scholar]
  70. Mao F. Yan J. Li J. Jia X. Miao H. Sun Y. Huang L. Li X. New multi-target-directed small molecules against Alzheimer’s disease: A combination of resveratrol and clioquinol. Org. Biomol. Chem. 2014 12 31 5936 5944 10.1039/C4OB00998C 24986600
    [Google Scholar]
  71. Wu M.Y. Esteban G. Brogi S. Shionoya M. Wang L. Campiani G. Unzeta M. Inokuchi T. Butini S. Marco-Contelles J. Donepezil-like multifunctional agents: Design, synthesis, molecular modeling and biological evaluation. Eur. J. Med. Chem. 2016 121 864 879 10.1016/j.ejmech.2015.10.001 26471320
    [Google Scholar]
  72. Li X. Li T. Zhang P. Li X. Lu L. Sun Y. Zhang B. Allen S. White L. Phillips J. Zhu Z. Yao H. Xu J. Discovery of novel hybrids containing clioquinol−1-benzyl-1,2,3,6-tetrahydropyridine as multi-target-directed ligands (MTDLs) against Alzheimer’s disease. Eur. J. Med. Chem. 2022 244 114841 10.1016/j.ejmech.2022.114841 36257284
    [Google Scholar]
  73. Knez D. Diez-Iriepa D. Chioua M. Gottinger A. Denic M. Chantegreil F. Nachon F. Brazzolotto X. Skrzypczak-Wiercioch A. Meden A. Pišlar A. Kos J. Žakelj S. Stojan J. Sałat K. Serrano J. Fernández A.P. Sánchez-García A. Martínez-Murillo R. Binda C. López-Muñoz F. Gobec S. Marco-Contelles J. 8-Hydroxyquinolylnitrones as multifunctional ligands for the therapy of neurodegenerative diseases. Acta Pharm. Sin. B 2023 13 5 2152 2175 10.1016/j.apsb.2023.01.013 37250172
    [Google Scholar]
  74. Fernández-Bachiller M.I. Pérez C. González-Muñoz G.C. Conde S. López M.G. Villarroya M. García A.G. Rodríguez-Franco M.I. Novel tacrine-8-hydroxyquinoline hybrids as multifunctional agents for the treatment of Alzheimer’s disease, with neuroprotective, cholinergic, antioxidant, and copper-complexing properties. J. Med. Chem. 2010 53 13 4927 4937 10.1021/jm100329q 20545360
    [Google Scholar]
  75. Knez D. Brus B. Coquelle N. Sosič I. Šink R. Brazzolotto X. Mravljak J. Colletier J.P. Gobec S. Structure-based development of nitroxoline derivatives as potential multifunctional anti-Alzheimer agents. Bioorg. Med. Chem. 2015 23 15 4442 4452 10.1016/j.bmc.2015.06.010 26116179
    [Google Scholar]
  76. Mitrović A. Mirković B. Sosič I. Gobec S. Kos J. Inhibition of endopeptidase and exopeptidase activity of cathepsin B impairs extracellular matrix degradation and tumour invasion. Biol. Chem. 2016 397 2 165 174 10.1515/hsz‑2015‑0236 26565553
    [Google Scholar]
  77. Mirković B. Markelc B. Butinar M. Mitrović A. Sosič I. Gobec S. Vasiljeva O. Turk B. Čemažar M. Serša G. Kos J. Nitroxoline impairs tumor progression in vitro and in vivo by regulating cathepsin B activity. Oncotarget 2015 6 22 19027 19042 10.18632/oncotarget.3699 25848918
    [Google Scholar]
  78. Knez D. Sosič I. Pišlar A. Mitrović A. Jukič M. Kos J. Gobec S. Biological evaluation of 8-hydroxyquinolines as multi-target directed ligands for treating Alzheimer’s Disease. Curr. Alzheimer. Res. 2019 16 9 801 814 10.2174/1567205016666191010130351 31660830
    [Google Scholar]
  79. Knez D. Sosič I. Mitrović A. Pišlar A. Kos J. Gobec S. 8-Hydroxyquinoline-based anti-Alzheimer multimodal agents. Monatsh. Chem. 2020 151 7 1111 1120 10.1007/s00706‑020‑02651‑0
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673409645250823055140
Loading
/content/journals/cmc/10.2174/0109298673409645250823055140
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test