Skip to content
2000
image of PELI3-Mediating Epithelial-Mesenchymal Transition Correlates with Radiation Sensitivity in Non-Small Cell Lung Cancer

Abstract

Introduction

Radiotherapy remains a cornerstone of treatment for non-small cell lung cancer (NSCLC). Despite its critical role, the emergence of radiation resistance remains a significant hurdle, often leading to therapeutic failure and disease progression. This research aimed to investigate the expression of Pellino E3 ubiquitin protein ligase family member 3 (PELI3) in NSCLC and examine its involvement in modulating the tumor's response to radiation.

Materials and Methods

To quantify PELI3 levels in NSCLC tissues, real-time PCR and Western blotting techniques were employed. The effects of silencing PELI3 on cancer cell proliferation were evaluated using CCK-8 and colony formation assays. Furthermore, an mouse xenograft model was used to corroborate the results.

Results

PELI3 expression was markedly elevated in NSCLC tumor samples relative to normal tissues and showed a strong association with clinical features, such as tumor volume, lymph node involvement, and radiotherapy responsiveness. Further analysis revealed that PELI3 promoted epithelial-to-mesenchymal transition (EMT) following radiation exposure. Suppressing PELI3 expression mitigated radiation-induced EMT in both cellular and animal models.

Discussion

Elevated PELI3 promotes radiation-induced EMT and radioresistance in NSCLC. Suppressing PELI3 reverses EMT features and enhances radiosensitivity and , highlighting PELI3 as a potential biomarker and therapeutic target to improve radiotherapy outcomes.

Conclusion

These findings suggest that PELI3 could serve as a valuable prognostic marker in NSCLC and may represent a promising target to improve tumor sensitivity to radiotherapy.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673409147251027113323
2026-01-08
2026-02-19
Loading full text...

Full text loading...

References

  1. Chaitanya Thandra K. Barsouk A. Saginala K. Sukumar Aluru J. Barsouk A. Epidemiology of lung cancer. Contemp. Oncol. 2021 25 1 45 52 10.5114/wo.2021.103829 33911981
    [Google Scholar]
  2. Dela Cruz C.S. Tanoue L.T. Matthay R.A. Lung cancer: Epidemiology, etiology, and prevention. Clin. Chest Med. 2011 32 4 605 644 10.1016/j.ccm.2011.09.001 22054876
    [Google Scholar]
  3. Molina J.R. Yang P. Cassivi S.D. Schild S.E. Adjei A.A. Non-small cell lung cancer: Epidemiology, risk factors, treatment, and survivorship. Mayo Clin. Proc. 2008 83 5 584 594 10.1016/S0025‑6196(11)60735‑0 18452692
    [Google Scholar]
  4. Inamura K. Lung cancer: Understanding its molecular pathology and the 2015 WHO classification. Front. Oncol. 2017 7 193 10.3389/fonc.2017.00193 28894699
    [Google Scholar]
  5. Wang S. Dong L. Wang X. Wang X. Classification of pathological types of lung cancer from CT images by deep residual neural networks with transfer learning strategy. Open Med. 2020 15 1 190 197 10.1515/med‑2020‑0028 32190744
    [Google Scholar]
  6. Alduais Y. Zhang H. Fan F. Chen J. Chen B. Non-small cell lung cancer (NSCLC): A review of risk factors, diagnosis, and treatment. Medicine 2023 102 8 32899 10.1097/MD.0000000000032899 36827002
    [Google Scholar]
  7. Debela D.T. Muzazu S.G.Y. Heraro K.D. Ndalama M.T. Mesele B.W. Haile D.C. Kitui S.K. Manyazewal T. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Med. 2021 9 20503121211034366 10.1177/20503121211034366 34408877
    [Google Scholar]
  8. Li Y. Yan B. He S. Advances and challenges in the treatment of lung cancer. Biomed. Pharmacother. 2023 169 115891 10.1016/j.biopha.2023.115891 37979378
    [Google Scholar]
  9. Orzetti S. Tommasi F. Bertola A. Bortolin G. Caccin E. Cecco S. Ferrarin E. Giacomin E. Baldo P. Genetic therapy and molecular targeted therapy in oncology: Safety, pharmacovigilance, and perspectives for research and clinical practice. Int. J. Mol. Sci. 2022 23 6 3012 10.3390/ijms23063012 35328435
    [Google Scholar]
  10. Sharma S.V. Bell D.W. Settleman J. Haber D.A. Epidermal growth factor receptor mutations in lung cancer. Nat. Rev. Cancer 2007 7 3 169 181 10.1038/nrc2088 17318210
    [Google Scholar]
  11. Brouns A.J.W.M. Hendriks L.E.L. Robbesom-van den Berge I.J. Driessen A.J.H.M. Roemen G.M.J.M. van Herpen B.L.J. Dekkers Z. Heitzer B. Leunissen D.J.G. Moonen L. Lunde R. Westenend M. van Driel M. Speel E.J.M. Dingemans A.M.C. Association of RANKL and EGFR gene expression with bone metastases in patients with metastatic non-small cell lung cancer. Front. Oncol. 2023 13 1145001 10.3389/fonc.2023.1145001 37213294
    [Google Scholar]
  12. Zhou H. Zheng Z. Fan C. Zhou Z. Mechanisms and strategies of immunosenescence effects on non-small cell lung cancer (NSCLC) treatment: A comprehensive analysis and future directions. Semin. Cancer Biol. 2025 109 44 66 10.1016/j.semcancer.2025.01.001 39793777
    [Google Scholar]
  13. Zhang F. Wang B. Wu M. Zhang L. Ji M. Current status of KRAS G12C inhibitors in NSCLC and the potential for combination with anti-PD-(L)1 therapy: A systematic review. Front. Immunol. 2025 16 1509173 10.3389/fimmu.2025.1509173 40303413
    [Google Scholar]
  14. Shao L. Li T. Jia X. Zhang X. Li Q. Dong C. Possible new mechanisms of primary drug resistance in NSCLC with EGFR mutation treated with Osimertinib. IUBMB Life 2025 77 2 70002 10.1002/iub.70002 39907312
    [Google Scholar]
  15. Chatterjee E. Sharma R. Dey B. Singh H. Naik A. Khan A. Basak S. Bansode A. Sachdeva R. Sharma A. Kumar R. Naik P. Singh P.K. Nepali K. Guru S.K. Anticancer activity of RM-3-22: A TAZQ-based hydroxamic acid derivative targeting NSCLC in vitro and in vivo. Front. Pharmacol. 2025 16 1544666 10.3389/fphar.2025.1544666 40538534
    [Google Scholar]
  16. Sharma R. Chatterjee E. Mathew J. Sharma S. Rao N.V. Pan C.H. Lee S.B. Dhingra A. Grewal A.S. Liou J.P. Guru S.K. Nepali K. Accommodation of ring C expanded deoxyvasicinone in the HDAC inhibitory pharmacophore culminates into a tractable anti-lung cancer agent and pH-responsive nanocarrier. Eur. J. Med. Chem. 2022 240 114602 10.1016/j.ejmech.2022.114602 35858522
    [Google Scholar]
  17. Jensen L.E. Whitehead A.S. Pellino3, a novel member of the Pellino protein family, promotes activation of c-Jun and Elk-1 and may act as a scaffolding protein. J. Immunol. 2003 171 3 1500 1506 10.4049/jimmunol.171.3.1500 12874243
    [Google Scholar]
  18. Reniewicz P. Kula A. Makuch E. Ochnik M. Lipiński T. Siednienko J. Ligase Pellino3 regulates macrophage action and survival in response to VSV infection in RIG-I-dependent path. Oxid. Med. Cell. Longev. 2021 2021 1 6668463 10.1155/2021/6668463 34306313
    [Google Scholar]
  19. Zhang E. Li X. The emerging roles of pellino family in pattern recognition receptor signaling. Front. Immunol. 2022 13 728794 10.3389/fimmu.2022.728794 35197966
    [Google Scholar]
  20. Lamouille S. Xu J. Derynck R. Molecular mechanisms of epithelial–mesenchymal transition. Nat. Rev. Mol. Cell Biol. 2014 15 3 178 196 10.1038/nrm3758 24556840
    [Google Scholar]
  21. Du B. Shim J. Targeting epithelial–mesenchymal transition (EMT) to overcome drug resistance in cancer. Molecules 2016 21 7 965 10.3390/molecules21070965 27455225
    [Google Scholar]
  22. Nguyen D.X. Bos P.D. Massagué J. Metastasis: From dissemination to organ-specific colonization. Nat. Rev. Cancer 2009 9 4 274 284 10.1038/nrc2622 19308067
    [Google Scholar]
  23. Kim Y.M. Kim H.Y. Ha Thi H.T. Kim J. Lee Y.J. Kim S.J. Hong S. Pellino 3 promotes the colitis-associated colorectal cancer through suppression of IRF4 -Mediated negative regulation of TLR4 signalling. Mol. Oncol. 2023 17 11 2380 2395 10.1002/1878‑0261.13475 37341064
    [Google Scholar]
  24. Jin W. Chang M. Sun S.C. Peli: A family of signal-responsive E3 ubiquitin ligases mediating TLR signaling and T-cell tolerance. Cell. Mol. Immunol. 2012 9 2 113 122 10.1038/cmi.2011.60 22307041
    [Google Scholar]
  25. Yan L. Cui Y. Feng J. Biology of Pellino1: A potential therapeutic target for inflammation in diseases and cancers. Front. Immunol. 2023 14 1292022 10.3389/fimmu.2023.1292022 38179042
    [Google Scholar]
  26. He Y. Shi Y. Liu R. Wang Z. Wang B. Li S. Zhang H. PELI3 mediates pro-tumor actions of down-regulated miR-365a-5p in non-small cell lung cancer. Biol. Res. 2019 52 1 24 10.1186/s40659‑019‑0230‑y 30995936
    [Google Scholar]
  27. Li F. Li H. Li S. Lv B. Shi J. Yan H. Zhang H. He Y. miR-365a-5p suppresses gefitinib resistance in non-small-cell lung cancer through targeting PELI3. Pharmacogenomics 2020 21 11 771 783 10.2217/pgs‑2020‑0006 32635799
    [Google Scholar]
  28. Li F. Li H. Li S. Lv B. Shi J. Yan H. Zhang H. He Y. Long Non-coding RNA MIAT mediates non-small cell lung cancer development through regulating the miR-128-3p/PELI3 axis. Biochem. Genet. 2020 58 6 867 882 10.1007/s10528‑020‑09979‑6 32556677
    [Google Scholar]
  29. Prezzano K.M. Ma S.J. Hermann G.M. Rivers C.I. Gomez-Suescun J.A. Singh A.K. Stereotactic body radiation therapy for non-small cell lung cancer: A review. World J. Clin. Oncol. 2019 10 1 14 27 10.5306/wjco.v10.i1.14 30627522
    [Google Scholar]
  30. Burdett S. Rydzewska L. Tierney J. Fisher D. Parmar M.K. Arriagada R. Pignon J.P. Le Pechoux C. Postoperative radiotherapy for non-small cell lung cancer. Cochrane Database Syst. Rev. 2016 9 9 CD002142 10.1002/14651858.CD002142.pub3 27684386
    [Google Scholar]
  31. Brown S. Banfill K. Aznar M.C. Whitehurst P. Faivre Finn C. The evolving role of radiotherapy in non-small cell lung cancer. Br. J. Radiol. 2019 92 1104 20190524 10.1259/bjr.20190524 31535580
    [Google Scholar]
  32. Carlos-Reyes A. Muñiz-Lino M.A. Romero-Garcia S. López-Camarillo C. Hernández-de la Cruz O.N. Biological adaptations of tumor cells to radiation therapy. Front. Oncol. 2021 11 718636 10.3389/fonc.2021.718636 34900673
    [Google Scholar]
  33. Wu Y. Song Y. Wang R. Wang T. Molecular mechanisms of tumor resistance to radiotherapy. Mol. Cancer 2023 22 1 96 10.1186/s12943‑023‑01801‑2 37322433
    [Google Scholar]
  34. Li F. Zhou K. Gao L. Zhang B. Li W. Yan W. Song X. Yu H. Wang S. Yu N. Jiang Q. Radiation induces the generation of cancer stem cells: A novel mechanism for cancer radioresistance. Oncol. Lett. 2016 12 5 3059 3065 10.3892/ol.2016.5124 27899964
    [Google Scholar]
  35. Qiao L. Chen Y. Liang N. Xie J. Deng G. Chen F. Wang X. Liu F. Li Y. Zhang J. Targeting epithelial-to-mesenchymal transition in radioresistance: Crosslinked mechanisms and strategies. Front. Oncol. 2022 12 775238 10.3389/fonc.2022.775238 35251963
    [Google Scholar]
  36. Lu J. Kornmann M. Traub B. Role of epithelial to mesenchymal transition in colorectal cancer. Int. J. Mol. Sci. 2023 24 19 14815 10.3390/ijms241914815 37834263
    [Google Scholar]
  37. Kalluri R. Weinberg R.A. The basics of epithelial-mesenchymal transition. J. Clin. Invest. 2009 119 6 1420 1428 10.1172/JCI39104 19487818
    [Google Scholar]
  38. Santamaría P.G. Moreno-Bueno G. Cano A. Contribution of epithelial plasticity to therapy resistance. J. Clin. Med. 2019 8 5 676 10.3390/jcm8050676 31091749
    [Google Scholar]
  39. Mollaei M. Hassan Z.M. Khorshidi F. Langroudi L. Chemotherapeutic drugs: Cell death- and resistance-related signaling pathways. Are they really as smart as the tumor cells? Transl. Oncol. 2021 14 5 101056 10.1016/j.tranon.2021.101056 33684837
    [Google Scholar]
  40. Chua H.L. Bhat-Nakshatri P. Clare S.E. Morimiya A. Badve S. Nakshatri H. NF-κB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: Potential involvement of ZEB-1 and ZEB-2. Oncogene 2007 26 5 711 724 10.1038/sj.onc.1209808 16862183
    [Google Scholar]
  41. Schauvliege R. Janssens S. Beyaert R. Pellino proteins: Novel players in TLR and IL-1R signalling. J. Cell. Mol. Med. 2007 11 3 453 461 10.1111/j.1582‑4934.2007.00040.x 17635639
    [Google Scholar]
  42. Bai M. Ma X. Li X. Wang X. Mei Q. Li X. Wu Z. Han W. The accomplices of NF-κB lead to radioresistance. Curr. Protein Pept. Sci. 2015 16 4 279 294 10.2174/138920371604150429152328 25929862
    [Google Scholar]
  43. Hao Y. Baker D. ten Dijke P. TGF-β-mediated epithelial-mesenchymal transition and cancer metastasis. Int. J. Mol. Sci. 2019 20 11 2767 10.3390/ijms20112767 31195692
    [Google Scholar]
  44. Zhan T. Rindtorff N. Boutros M. Wnt signaling in cancer. Oncogene 2017 36 11 1461 1473 10.1038/onc.2016.304 27617575
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673409147251027113323
Loading
/content/journals/cmc/10.2174/0109298673409147251027113323
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: non-small cell lung cancer ; radiotherapy ; NSCLC ; radiosensitivity ; lung cancer ; PELI3
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test