Skip to content
2000
image of Identification and Immune Cell Profiling of Exosome-related Genes in Acute Respiratory Distress Syndrome: An Integrated Bioinformatics Analysis

Abstract

Background

Acute respiratory distress syndrome (ARDS) is a life-threatening condition associated with high mortality and morbidity. However, targeted therapies that effectively improve patient outcomes remain limited. Exosomes play pivotal roles in intercellular communication and epigenetic regulation.

Objective

This study aimed to identify exosome-related differentially expressed genes (EXORDEGs) in whole blood associated with ARDS and to explore their potential mechanistic roles in the disease.

Methods

Two gene expression datasets (GSE32707 and GSE66890) were retrieved from the Gene Expression Omnibus for comprehensive bioinformatics analysis. Analytical approaches included Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses, protein-protein interaction network construction using the STRING database, and immune infiltration profiling single-sample gene set enrichment analysis in relation to hub genes.

Results

We identified 21 EXORDEGs, primarily enriched in biological processes such as endothelial cell development and apoptosis. Four hub genes—, , , and —were robustly associated with ARDS, with showing the most pronounced differential expression. Immune infiltration analysis revealed significant disparities in nine immune cell populations between ARDS and control samples.

Discussion

The results of this comprehensive bioinformatics analysis identified four EXORDEGs——with important roles in acute respiratory distress syndrome.

Conclusion

This study first systematically identified EXORDEGs in ARDS, discovering four hub genes and their associations with immune cells. The hub genes may be implicated in endothelial injury, inflammation, and immune dysregulation. These findings provide novel insights into ARDS pathogenesis and highlight potential therapeutic targets for further investigation. Given the disease heterogeneity, our findings primarily reflect common molecular characteristics, while the specific features of different etiological subtypes require further investigation.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673407035251122102639
2026-01-08
2026-02-19
Loading full text...

Full text loading...

/deliver/fulltext/cmc/10.2174/0109298673407035251122102639/BMS-CMC-2025-306.html?itemId=/content/journals/cmc/10.2174/0109298673407035251122102639&mimeType=html&fmt=ahah

References

  1. Tang Y. Liu B. Ma A. Wang B. Xiong H. Zhou Y. Yang J. Kang Y. Lung microbiota: A new hope for treating acute respiratory distress syndrome? Front. Microbiol. 2025 16 1586949 10.3389/fmicb.2025.1586949 40520382
    [Google Scholar]
  2. Cave C. Samano D. Sharma A.M. Dickinson J. Salomon J. Mahapatra S. Acute respiratory distress syndrome: A review of ARDS across the life course. J. Investig. Med. 2024 72 8 798 818 10.1177/10815589241270612 39092841
    [Google Scholar]
  3. Raghavendran K. Pryhuber G. Chess P. Davidson B. Knight P. Notter R. Pharmacotherapy of acute lung injury and acute respiratory distress syndrome. Curr. Med. Chem. 2008 15 19 1911 1924 10.2174/092986708785132942 18691048
    [Google Scholar]
  4. Notz Q. Hermann J. Muellenbach R.M. Lotz C. Pathophysiology of acute respiratory distress syndrome. Anasthesiol. Intensivmed. Notfallmed. Schmerzther. 2024 59 1 12 22 10.1055/a‑2043‑8602 38190822
    [Google Scholar]
  5. Park K.S. Lässer C. Lötvall J. Extracellular vesicles and the lung: From disease pathogenesis to biomarkers and treatments. Physiol. Rev. 2025 105 3 1733 1821 10.1152/physrev.00032.2024 40125970
    [Google Scholar]
  6. Patil S.M. Sawant S.S. Kunda N.K. Exosomes as drug delivery systems: A brief overview and progress update. Eur. J. Pharm. Biopharm. 2020 154 259 269 10.1016/j.ejpb.2020.07.026 32717385
    [Google Scholar]
  7. Arrighetti N. Corbo C. Evangelopoulos M. Pastò A. Zuco V. Tasciotti E. Exosome-like nanovectors for drug delivery in cancer. Curr. Med. Chem. 2019 26 33 6132 6148 10.2174/0929867325666180831150259 30182846
    [Google Scholar]
  8. Yang D. Zhang W. Zhang H. Zhang F. Chen L. Ma L. Larcher L.M. Chen S. Liu N. Zhao Q. Tran P.H.L. Chen C. Veedu R.N. Wang T. Progress, opportunity, and perspective on exosome isolation - Efforts for efficient exosome-based theranostics. Theranostics 2020 10 8 3684 3707 10.7150/thno.41580 32206116
    [Google Scholar]
  9. Singh S. Paul D. Nath V. A R. Exosomes: Current knowledge and future perspectives. Tissue Barriers 2024 12 2 2232248 10.1080/21688370.2023.2232248 37439246
    [Google Scholar]
  10. Gheitasi H. Sabbaghian M. Shekarchi A.A. Mirmazhary A.A. Poortahmasebi V. Exosome-mediated regulation of inflammatory pathway during respiratory viral disease. Virol. J. 2024 21 1 30 10.1186/s12985‑024‑02297‑y 38273382
    [Google Scholar]
  11. Tarin M. Oryani M.A. Javid H. Karimi-Shahri M. Exosomal PD-L1 in non-small cell lung Cancer: Implications for immune evasion and resistance to immunotherapy. Int. Immunopharmacol. 2025 155 114519 10.1016/j.intimp.2025.114519 40199140
    [Google Scholar]
  12. Zhang S. Zhao X. Lv Y. Niu J. Wei X. Luo Z. Wang X. Chen X.L. Exosomes of different cellular origins: Prospects and challenges in the treatment of acute lung injury after burns. J. Mater. Chem. B Mater. Biol. Med. 2025 13 5 1531 1547 10.1039/D4TB02351J 39704476
    [Google Scholar]
  13. Yuan H.X. Chen Y.T. Li Y.Q. Wang Y.S. Ou Z.J. Li Y. Gao J.J. Deng M.J. Song Y.K. Fu L. Ci H.B. Chang F.J. Cao Y. Jian Y.P. Kang B.A. Mo Z.W. Ning D.S. Peng Y.M. Liu Z.L. Liu X.J. Xu Y.Q. Xu J. Ou J.S. Endothelial extracellular vesicles induce acute lung injury via follistatin-like protein 1. Sci. China Life Sci. 2024 67 3 475 487 10.1007/s11427‑022‑2328‑x 37219765
    [Google Scholar]
  14. Hu Q. Yao J. Wu X. Li J. Li G. Tang W. Liu J. Wan M. Emodin attenuates severe acute pancreatitis-associated acute lung injury by suppressing pancreatic exosome-mediated alveolar macrophage activation. Acta Pharm. Sin. B 2022 12 10 3986 4003 10.1016/j.apsb.2021.10.008 36213542
    [Google Scholar]
  15. Jiao Y. Zhang T. Zhang C. Ji H. Tong X. Xia R. Wang W. Ma Z. Shi X. Exosomal miR-30d-5p of neutrophils induces M1 macrophage polarization and primes macrophage pyroptosis in sepsis-related acute lung injury. Crit. Care 2021 25 1 356 10.1186/s13054‑021‑03775‑3 34641966
    [Google Scholar]
  16. Gao M Yu T Liu D Shi Y Yang P Zhang J Wang J Liu Y Zhang X Sepsis plasma-derived exosomal miR-1-3p induces endothelial cell dysfunction by targeting SERP1. Clin. Sci 2021 135 2 347 365 10.1042/CS20200573 33416075 PMC7843403
    [Google Scholar]
  17. Sun H. Gao W. Chen R. Chen S. Gu X. Wang F. Li Q. CircRNAs in BALF exosomes and plasma as diagnostic biomarkers in patients with acute respiratory distress syndrome caused by severe pneumonia. Front. Cell. Infect. Microbiol. 2023 13 1194495 10.3389/fcimb.2023.1194495 37674577
    [Google Scholar]
  18. Zubair M. Abouelnazar F.A. Iqbal M.A. Pan J. Zheng X. Chen T. Shen W. Yin J. Yan Y. Liu P. Mao F. Chu Y. Mesenchymal stem cell-derived exosomes as a plausible immunomodulatory therapeutic tool for inflammatory diseases. Front. Cell Dev. Biol. 2025 13 1563427 10.3389/fcell.2025.1563427 40129569
    [Google Scholar]
  19. Feng Z. Jing Z. Li Q. Chu L. Jiang Y. Zhang X. Yan L. Liu Y. Jiang J. Xu P. Chen Q. Wang M. Yang H. Zhou G. Jiang X. Chen X. Xia H. Exosomal STIMATE derived from type II alveolar epithelial cells controls metabolic reprogramming of tissue-resident alveolar macrophages. Theranostics 2023 13 3 991 1009 10.7150/thno.82552 36793853
    [Google Scholar]
  20. Gao R. Zhang X. Ju H. Zhou Y. Yin L. Yang L. Wu P. Sun X. Fang H. Telocyte-derived exosomes promote angiogenesis and alleviate acute respiratory distress syndrome via JAK/STAT-miR-221-E2F2 axis. Mol. Biomed. 2025 6 1 21 10.1186/s43556‑025‑00259‑6 40198510
    [Google Scholar]
  21. Ge R Wang F Peng Z Advances in biomarkers for diagnosis and treatment of ARDS. Diagnostics 2023 13 21 3296 10.3390/diagnostics13213296 37958192 PMC10649435
    [Google Scholar]
  22. Barrett T. Wilhite S.E. Ledoux P. Evangelista C. Kim I.F. Tomashevsky M. Marshall K.A. Phillippy K.H. Sherman P.M. Holko M. Yefanov A. Lee H. Zhang N. Robertson C.L. Serova N. Davis S. Soboleva A. NCBI GEO: Archive for functional genomics data sets--Update. Nucleic Acids Res. 2013 41 D991 D995 10.1093/nar/gks1193 23193258
    [Google Scholar]
  23. Stelzer G Rosen N Plaschkes I Zimmerman S Twik M Fishilevich S Iny Stein T Nudel R Lieder I Mazor Y Kaplan S Dahary D The genecards suite: From gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinformatics 2016 54 1 1.30.1 1.30.33 10.1002/cpbi.5
    [Google Scholar]
  24. Liberzon A. Subramanian A. Pinchback R. Thorvaldsdóttir H. Tamayo P. Mesirov J.P. Molecular signatures database (MSigDB) 3.0. Bioinformatics 2011 27 12 1739 1740 10.1093/bioinformatics/btr260 21546393
    [Google Scholar]
  25. Lin Y. Huang K. Cai Z. Chen Y. Feng L. Gao Y. Zheng W. Fan X. Qiu G. Zhuang J. Feng S. A novel exosome-relevant molecular classification uncovers distinct immune escape mechanisms and genomic alterations in gastric cancer. Front. Pharmacol. 2022 13 884090 10.3389/fphar.2022.884090 35721114
    [Google Scholar]
  26. Ben Salem K. Ben Abdelaziz A. Principal component analysis (PCA). Tunis. Med. 2021 99 4 383 389 35244921
    [Google Scholar]
  27. Mi H. Muruganujan A. Ebert D. Huang X. Thomas P.D. PANTHER version 14: More genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 2019 47 D1 D419 D426 10.1093/nar/gky1038 30407594
    [Google Scholar]
  28. Kanehisa M. Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000 28 1 27 30 10.1093/nar/28.1.27 10592173
    [Google Scholar]
  29. Subramanian A. Tamayo P. Mootha V.K. Mukherjee S. Ebert B.L. Gillette M.A. Paulovich A. Pomeroy S.L. Golub T.R. Lander E.S. Mesirov J.P. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 2005 102 43 15545 15550 10.1073/pnas.0506580102 16199517
    [Google Scholar]
  30. Szklarczyk D. Gable A.L. Lyon D. Junge A. Wyder S. Huerta-Cepas J. Simonovic M. Doncheva N.T. Morris J.H. Bork P. Jensen L.J. Mering C. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019 47 D1 D607 D613 10.1093/nar/gky1131 30476243
    [Google Scholar]
  31. Shannon P. Markiel A. Ozier O. Baliga N.S. Wang J.T. Ramage D. Amin N. Schwikowski B. Ideker T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003 13 11 2498 2504 10.1101/gr.1239303 14597658
    [Google Scholar]
  32. Zhou K.R. Liu S. Sun W.J. Zheng L.L. Zhou H. Yang J.H. Qu L.H. ChIPBase v2.0: Decoding transcriptional regulatory networks of non-coding RNAs and protein-coding genes from ChIP-seq data. Nucleic Acids Res. 2017 45 D1 D43 D50 10.1093/nar/gkw965 27924033
    [Google Scholar]
  33. Vlachos I.S. Paraskevopoulou M.D. Karagkouni D. Georgakilas G. Vergoulis T. Kanellos I. Anastasopoulos I.L. Maniou S. Karathanou K. Kalfakakou D. Fevgas A. Dalamagas T. Hatzigeorgiou A.G. DIANA-TarBase v7.0: Indexing more than half a million experimentally supported miRNA:mRNA interactions. Nucleic Acids Res. 2015 43 D1 D153 D159 10.1093/nar/gku1215 25416803
    [Google Scholar]
  34. Grondin C.J. Davis A.P. Wiegers J.A. Wiegers T.C. Sciaky D. Johnson R.J. Mattingly C.J. Predicting molecular mechanisms, pathways, and health outcomes induced by Juul e-cigarette aerosol chemicals using the comparative toxicogenomics database. Curr. Res. Toxicol. 2021 2 272 281 10.1016/j.crtox.2021.08.001 34458863
    [Google Scholar]
  35. Robin X. Turck N. Hainard A. Tiberti N. Lisacek F. Sanchez J.C. Müller M. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 2011 12 1 77 10.1186/1471‑2105‑12‑77 21414208
    [Google Scholar]
  36. Xiao B. Liu L. Li A. Xiang C. Wang P. Li H. Xiao T. Identification and verification of immune-related gene prognostic signature based on ssGSEA for osteosarcoma. Front. Oncol. 2020 10 607622 10.3389/fonc.2020.607622 33384961
    [Google Scholar]
  37. Sadana D. Kaur S. Sankaramangalam K. Saini I. Banerjee K. Siuba M. Amaral V. Gadre S. Torbic H. Krishnan S. Duggal A. Mortality associated with acute respiratory distress syndrome, 2009-2019: A systematic review and meta-analysis. Crit. Care Resusc. 2022 24 4 341 351 10.51893/2022.4.OA4 38047005
    [Google Scholar]
  38. Qiao X. Yin J. Zheng Z. Li L. Feng X. Endothelial cell dynamics in sepsis-induced acute lung injury and acute respiratory distress syndrome: Pathogenesis and therapeutic implications. Cell Commun. Signal. 2024 22 1 241 10.1186/s12964‑024‑01620‑y 38664775
    [Google Scholar]
  39. Liang N.W. Wilson C. Davis B. Wolf I. Qyli T. Moy J. Beebe D.J. Schnapp L.M. Kerr S.C. Faust H.E. Modeling lung endothelial dysfunction in sepsis-associated ARDS using a microphysiological system. Physiol. Rep. 2024 12 13 e16134 10.14814/phy2.16134 38981846
    [Google Scholar]
  40. Wu X. Tang Y. Lu X. Liu Y. Liu X. Sun Q. Wang L. Huang W. Liu A. Liu L. Chao J. Zhang X. Qiu H. Endothelial cell-derived extracellular vesicles modulate the therapeutic efficacy of mesenchymal stem cells through IDH2/TET pathway in ARDS. Cell Commun. Signal. 2024 22 1 293 10.1186/s12964‑024‑01672‑0 38802896
    [Google Scholar]
  41. Liu C. Xiao K. Xie L. Advances in the use of exosomes for the treatment of ALI/ARDS. Front. Immunol. 2022 13 971189 10.3389/fimmu.2022.971189 36016948
    [Google Scholar]
  42. Wu X. Liu Z. Hu L. Gu W. Zhu L. Exosomes derived from endothelial progenitor cells ameliorate acute lung injury by transferring miR-126. Exp. Cell Res. 2018 370 1 13 23 10.1016/j.yexcr.2018.06.003 29883714
    [Google Scholar]
  43. Rogers C.J. Harman R.J. Bunnell B.A. Schreiber M.A. Xiang C. Wang F.S. Santidrian A.F. Minev B.R. Rationale for the clinical use of adipose-derived mesenchymal stem cells for COVID-19 patients. J. Transl. Med. 2020 18 1 203 10.1186/s12967‑020‑02380‑2 32423449
    [Google Scholar]
  44. Liu Y. Wu M. Xu S. Niu X. Liu W. Miao C. Lin A. Xu Y. Yu L. PSMD2 contributes to the progression of esophageal squamous cell carcinoma by repressing autophagy. Cell Biosci. 2023 13 1 67 10.1186/s13578‑023‑01016‑4 36998052
    [Google Scholar]
  45. Li X. Li X. Hu Y. Liu O. Wang Y. Li S. Yang Q. Lin B. PSMD8 can serve as potential biomarker and therapeutic target of the PSMD family in ovarian cancer: Based on bioinformatics analysis and in vitro validation. BMC Cancer 2023 23 1 573 10.1186/s12885‑023‑11017‑8 37349676
    [Google Scholar]
  46. Wang S. Sun D. Liu C. Guo Y. Ma J. Ge R. Cui S. Weighted gene co-expression network analysis reveals the hub genes associated with pulmonary hypertension. Exp. Biol. Med. 2023 248 3 217 231 10.1177/15353702221147557 36740764
    [Google Scholar]
  47. Chen C. Nie D. Huang Y. Yu X. Chen Z. Zhong M. Liu X. Wang X. Sui S. Liu Z. Tan J. Yu Z. Li Y. Zeng C. Anticancer effects of disulfiram in T-cell malignancies through NPL4-mediated ubiquitin–proteasome pathway. J. Leukoc. Biol. 2022 112 4 919 929 10.1002/JLB.5MA1121‑644R 35363385
    [Google Scholar]
  48. Greil C. Engelhardt M. Wäsch R. The role of the APC/C and its coactivators Cdh1 and cdc20 in cancer development and therapy. Front. Genet. 2022 13 941565 10.3389/fgene.2022.941565 35832196
    [Google Scholar]
  49. Chen X.S. Chen F. He S.J. Chen Y.Y. Chi B.T. Huang W.Y. Wei Y. Zhao C.Y. Song C. He R.Q. Chen G. Kong J.L. Lu H.P. Elevated expression of ANAPC1 in lung squamous cell carcinoma: Clinical implications and mechanisms. Future Sci. OA 2025 11 1 2482487 10.1080/20565623.2025.2482487 40139913
    [Google Scholar]
  50. Zheng Y. Wang J. Ling Z. Zhang J. Zeng Y. Wang K. Zhang Y. Nong L. Sang L. Xu Y. Liu X. Li Y. Huang Y. A diagnostic model for sepsis-induced acute lung injury using a consensus machine learning approach and its therapeutic implications. J. Transl. Med. 2023 21 1 620 10.1186/s12967‑023‑04499‑4 37700323
    [Google Scholar]
  51. Wang T. Zhu Z. Liu Z. Yi L. Yang Z. Bian W. Chen W. Wang S. Li G. Li A. Martin G.S. Zhu X. Plasma neutrophil elastase and elafin as prognostic biomarker for acute respiratory distress syndrome. Shock 2017 48 2 168 174 10.1097/SHK.0000000000000845 28187039
    [Google Scholar]
  52. Tejera P. O’Mahony D.S. Owen C.A. Wei Y. Wang Z. Gupta K. Su L. Villar J. Wurfel M. Christiani D.C. Functional characterization of polymorphisms in the peptidase inhibitor 3 (elafin) gene and validation of their contribution to risk of acute respiratory distress syndrome. Am. J. Respir. Cell Mol. Biol. 2014 51 2 262 272 10.1165/rcmb.2013‑0238OC 24617927
    [Google Scholar]
  53. Vera M. Pani B. Griffiths L.A. Muchardt C. Abbott C.M. Singer R.H. Nudler E. The translation elongation factor eEF1A1 couples transcription to translation during heat shock response. eLife 2014 3 e03164 10.7554/eLife.03164 25233275
    [Google Scholar]
  54. Xie R. Tan D. Liu B. Xiao G. Gong F. Zhang Q. Qi L. Zheng S. Yuan Y. Yang Z. Chen Y. Fei J. Xu D. Acute respiratory distress syndrome (ARDS): From mechanistic insights to therapeutic strategies. MedComm 2025 6 2 e70074 10.1002/mco2.70074 39866839
    [Google Scholar]
  55. Madhyastha R. Madhyastha H. Nurrahmah Q.I. Purbasari B. Maruyama M. Nakajima Y. MicroRNA 21 elicits a pro-inflammatory response in macrophages, with exosomes functioning as delivery vehicles. Inflammation 2021 44 4 1274 1287 10.1007/s10753‑021‑01415‑0 33501624
    [Google Scholar]
  56. Oryani M.A. Mohammad Al- Mosawi A.K. Javid H. Tajaldini M. Karimi-Shahri M. A bioligical perspective on the role of miR-206 in colorectal cancer. Gene 2025 961 149552 10.1016/j.gene.2025.149552 40339768
    [Google Scholar]
  57. Tang A.C. Rahavi S.M. Fung S.Y. Lu H.Y. Yang H. Lim C.J. Reid G.S. Turvey S.E. Combination therapy with proteasome inhibitors and TLR agonists enhances tumour cell death and IL-1β production. Cell Death Dis. 2018 9 2 162 10.1038/s41419‑017‑0194‑1 29415982
    [Google Scholar]
  58. Ma X.Z. Bartczak A. Zhang J. Khattar R. Chen L. Liu M.F. Edwards A. Levy G. McGilvray I.D. Proteasome inhibition in vivo promotes survival in a lethal murine model of severe acute respiratory syndrome. J. Virol. 2010 84 23 12419 12428 10.1128/JVI.01219‑10 20861244
    [Google Scholar]
  59. So Y. Yim D. Kim H.K. Lee S. Lee H. Yu Y. Choi C. Choi Y. Kim H. Yang C.S. Kim J.H. Functional nanosheet immunoswitches reprogramming innate macrophages for immunotherapy of colorectal cancer and sepsis. ACS Nano 2025 19 5 5165 5177 10.1021/acsnano.4c08828 39898465
    [Google Scholar]
  60. Tarin M. Oryani M.A. Javid H. Hashemzadeh A. Karimi-Shahri M. Advancements in chitosan-based nanocomposites with ZIF-8 nanoparticles: Multifunctional platforms for wound healing applications. Carbohydr. Polym. 2025 362 123656 10.1016/j.carbpol.2025.123656 40409814
    [Google Scholar]
  61. Akbari Oryani M. Tarin M. Rahnama Araghi L. Rastin F. Javid H. Hashemzadeh A. Karimi-Shahri M. Synergistic cancer treatment using porphyrin-based metal-organic frameworks for photodynamic and photothermal therapy. J. Drug Target. 2025 33 4 473 491 10.1080/1061186X.2024.2433551 39618308
    [Google Scholar]
  62. Zhang J. Guo Y. Mak M. Tao Z. Translational medicine for acute lung injury. J. Transl. Med. 2024 22 1 25 10.1186/s12967‑023‑04828‑7 38183140
    [Google Scholar]
  63. Ni X. Lv Y. Han L. Wang Q. Wang J. Liu T. Zhang L. Exosomal miR‐107 derived from cigarette smoking‐exposed bronchial epithelial cells aggravates acute lung injury by polarizing macrophage to proinflammatory phenotype. J. Biochem. Mol. Toxicol. 2025 39 2 e70139 10.1002/jbt.70139 39959948
    [Google Scholar]
  64. Yang L. Chen T. Huang Y. Yang Y. Cheng X. Wei F. hnRNPA2B1 promotes the production of exosomal miR-103-3p from endothelial progenitor cells to alleviate macrophage M1 polarization in acute respiratory distress syndrome. Int. Immunopharmacol. 2025 158 114830 10.1016/j.intimp.2025.114830 40381491
    [Google Scholar]
  65. Ohya M Tateishi A Matsumoto Y Satomi H Kobayashi M Bystander CD8+ T cells may be involved in the acute phase of diffuse alveolar damage. Virchows Arch 2023 482 3 605 613 10.1007/s00428‑023‑03521‑w 36849560 PMC9970130
    [Google Scholar]
  66. DeBerge M.P. Ely K.H. Cheng G.S. Enelow R.I. ADAM17-mediated processing of TNF-α expressed by antiviral effector CD8+ T cells is required for severe T-cell-mediated lung injury. PLoS One 2013 8 11 e79340 10.1371/journal.pone.0079340 24223177
    [Google Scholar]
  67. Yan L. Chen Y. Yang Y. Han Y. Tong C. Heat shock protein 90α reduces CD8+ T cell exhaustion in acute lung injury induced by lipopolysaccharide. Cell Death Discov. 2024 10 1 283 10.1038/s41420‑024‑02046‑8 38871699
    [Google Scholar]
  68. Lu J. Zeng X. Lu W. Feng J. Yang Y. Wei Y. Chen Y. Zhang J. Pinhu L. Documenting the immune response in patients with COVID-19-induced acute respiratory distress syndrome. Front. Cell Dev. Biol. 2023 11 1207960 10.3389/fcell.2023.1207960 37363730
    [Google Scholar]
  69. Ni L. Cheng M.L. Feng Y. Zhao H. Liu J. Ye F. Ye Q. Zhu G. Li X. Wang P. Shao J. Deng Y.Q. Wei P. Chen F. Qin C.F. Wang G. Li F. Zeng H. Dong C. Impaired cellular immunity to SARS-CoV-2 in severe COVID-19 patients. Front. Immunol. 2021 12 603563 10.3389/fimmu.2021.603563 33603759
    [Google Scholar]
  70. Bobcakova A. Petriskova J. Vysehradsky R. Kocan I. Kapustova L. Barnova M. Diamant Z. Jesenak M. Immune profile in patients with COVID-19: Lymphocytes exhaustion markers in relationship to clinical outcome. Front. Cell. Infect. Microbiol. 2021 11 646688 10.3389/fcimb.2021.646688 33937096
    [Google Scholar]
  71. Peng J. Tang R. Qi D. Yu Q. Hu H. Tang W. He J. Wang D. Predictive value of the baseline and early changes in blood eosinophils for short-term mortality in patients with acute respiratory distress syndrome. J. Inflamm. Res. 2022 15 1845 1858 10.2147/JIR.S350856 35313672
    [Google Scholar]
  72. Krishack P.A. Hollinger M.K. Kuzel T.G. Decker T.S. Louviere T.J. Hrusch C.L. Sperling A.I. Verhoef P.A. IL-33–mediated eosinophilia protects against acute lung injury. Am. J. Respir. Cell Mol. Biol. 2021 64 5 569 578 10.1165/rcmb.2020‑0166OC 33571420
    [Google Scholar]
  73. Rastin F. Javid H. Oryani M.A. Rezagholinejad N. Afshari A.R. Karimi-Shahri M. Immunotherapy for colorectal cancer: Rational strategies and novel therapeutic progress. Int. Immunopharmacol. 2024 126 111055 10.1016/j.intimp.2023.111055 37992445
    [Google Scholar]
  74. Reddy K. Sinha P. O’Kane C.M. Gordon A.C. Calfee C.S. McAuley D.F. Subphenotypes in critical care: Translation into clinical practice. Lancet. Respir. Med. 2020 8 6 631 643 10.1016/S2213‑2600(20)30124‑7 32526190
    [Google Scholar]
  75. Fan E. Brodie D. Slutsky A.S. Acute respiratory distress syndrome: Advances in diagnosis and treatment. JAMA 2018 319 7 698 710 10.1001/jama.2017.21907 29466596
    [Google Scholar]
  76. Reilly J. Calfee C. Christie J. Acute respiratory distress syndrome phenotypes. Semin. Respir. Crit. Care Med. 2019 40 1 019 030 10.1055/s‑0039‑1684049 31060085
    [Google Scholar]
  77. Liu X. Jiang Y. Jia X. Ma X. Han C. Guo N. Peng Y. Liu H. Ju Y. Luo X. Li X. Bu Y. Zhang J. Liu Y. Gao Y. Zhao M. Wang H. Luo L. Yu K. Wang C. Identification of distinct clinical phenotypes of acute respiratory distress syndrome with differential responses to treatment. Crit. Care 2021 25 1 320 10.1186/s13054‑021‑03734‑y 34461969
    [Google Scholar]
  78. Calfee C.S. Delucchi K. Parsons P.E. Thompson B.T. Ware L.B. Matthay M.A. Subphenotypes in acute respiratory distress syndrome: Latent class analysis of data from two randomised controlled trials. Lancet Respir. Med. 2014 2 8 611 620 10.1016/S2213‑2600(14)70097‑9 24853585
    [Google Scholar]
  79. Evrard B. Sinha P. Delucchi K. Hendrickson C.M. Kangelaris K.N. Liu K.D. Willmore A. Wu N. Neyton L. Schmiege E. Gomez A. Kerchberger V.E. Zalucky A. Matthay M.A. Ware L.B. Calfee C.S. Causes and attributable fraction of death from ARDS in inflammatory phenotypes of sepsis. Crit. Care 2024 28 1 164 10.1186/s13054‑024‑04943‑x 38745253
    [Google Scholar]
  80. Wang Y. Wei A. Su Z. Shi Y. Li X. He L. Characterization of lactylation-based phenotypes and molecular biomarkers in sepsis-associated acute respiratory distress syndrome. Sci. Rep. 2025 15 1 13831 10.1038/s41598‑025‑96969‑6 40263316
    [Google Scholar]
  81. Luo L. Shaver C.M. Zhao Z. Koyama T. Calfee C.S. Bastarache J.A. Ware L.B. Clinical predictors of hospital mortality differ between direct and indirect ARDS. Chest 2017 151 4 755 763 10.1016/j.chest.2016.09.004 27663180
    [Google Scholar]
  82. Saneh H. Wanczyk H. Walker J. Finck C. Stem cell-derived extracellular vesicles: A potential intervention for Bronchopulmonary Dysplasia. Pediatr. Res. 2025 97 2 497 509 10.1038/s41390‑024‑03471‑2 39251881
    [Google Scholar]
  83. Théry C. Witwer K.W. Aikawa E. Alcaraz M.J. Anderson J.D. Andriantsitohaina R. Antoniou A. Arab T. Archer F. Atkin-Smith G.K. Ayre D.C. Bach J.M. Bachurski D. Baharvand H. Balaj L. Baldacchino S. Bauer N.N. Baxter A.A. Bebawy M. Beckham C. Bedina Zavec A. Benmoussa A. Berardi A.C. Bergese P. Bielska E. Blenkiron C. Bobis-Wozowicz S. Boilard E. Boireau W. Bongiovanni A. Borràs F.E. Bosch S. Boulanger C.M. Breakefield X. Breglio A.M. Brennan M.Á. Brigstock D.R. Brisson A. Broekman M.L.D. Bromberg J.F. Bryl-Górecka P. Buch S. Buck A.H. Burger D. Busatto S. Buschmann D. Bussolati B. Buzás E.I. Byrd J.B. Camussi G. Carter D.R.F. Caruso S. Chamley L.W. Chang Y.T. Chen C. Chen S. Cheng L. Chin A.R. Clayton A. Clerici S.P. Cocks A. Cocucci E. Coffey R.J. Cordeiro-da-Silva A. Couch Y. Coumans F.A.W. Coyle B. Crescitelli R. Criado M.F. D’Souza-Schorey C. Das S. Datta Chaudhuri A. de Candia P. De Santana E.F. De Wever O. del Portillo H.A. Demaret T. Deville S. Devitt A. Dhondt B. Di Vizio D. Dieterich L.C. Dolo V. Dominguez Rubio A.P. Dominici M. Dourado M.R. Driedonks T.A.P. Duarte F.V. Duncan H.M. Eichenberger R.M. Ekström K. EL Andaloussi S. Elie-Caille C. Erdbrügger U. Falcón-Pérez J.M. Fatima F. Fish J.E. Flores-Bellver M. Försönits A. Frelet-Barrand A. Fricke F. Fuhrmann G. Gabrielsson S. Gámez-Valero A. Gardiner C. Gärtner K. Gaudin R. Gho Y.S. Giebel B. Gilbert C. Gimona M. Giusti I. Goberdhan D.C.I. Görgens A. Gorski S.M. Greening D.W. Gross J.C. Gualerzi A. Gupta G.N. Gustafson D. Handberg A. Haraszti R.A. Harrison P. Hegyesi H. Hendrix A. Hill A.F. Hochberg F.H. Hoffmann K.F. Holder B. Holthofer H. Hosseinkhani B. Hu G. Huang Y. Huber V. Hunt S. Ibrahim A.G.E. Ikezu T. Inal J.M. Isin M. Ivanova A. Jackson H.K. Jacobsen S. Jay S.M. Jayachandran M. Jenster G. Jiang L. Johnson S.M. Jones J.C. Jong A. Jovanovic-Talisman T. Jung S. Kalluri R. Kano S. Kaur S. Kawamura Y. Keller E.T. Khamari D. Khomyakova E. Khvorova A. Kierulf P. Kim K.P. Kislinger T. Klingeborn M. Klinke D.J. II Kornek M. Kosanović M.M. Kovács Á.F. Krämer-Albers E.M. Krasemann S. Krause M. Kurochkin I.V. Kusuma G.D. Kuypers S. Laitinen S. Langevin S.M. Languino L.R. Lannigan J. Lässer C. Laurent L.C. Lavieu G. Lázaro-Ibáñez E. Le Lay S. Lee M.S. Lee Y.X.F. Lemos D.S. Lenassi M. Leszczynska A. Li I.T.S. Liao K. Libregts S.F. Ligeti E. Lim R. Lim S.K. Linē A. Linnemannstöns K. Llorente A. Lombard C.A. Lorenowicz M.J. Lörincz Á.M. Lötvall J. Lovett J. Lowry M.C. Loyer X. Lu Q. Lukomska B. Lunavat T.R. Maas S.L.N. Malhi H. Marcilla A. Mariani J. Mariscal J. Martens-Uzunova E.S. Martin-Jaular L. Martinez M.C. Martins V.R. Mathieu M. Mathivanan S. Maugeri M. McGinnis L.K. McVey M.J. Meckes D.G. Jr Meehan K.L. Mertens I. Minciacchi V.R. Möller A. Møller Jørgensen M. Morales-Kastresana A. Morhayim J. Mullier F. Muraca M. Musante L. Mussack V. Muth D.C. Myburgh K.H. Najrana T. Nawaz M. Nazarenko I. Nejsum P. Neri C. Neri T. Nieuwland R. Nimrichter L. Nolan J.P. Nolte-’t Hoen E.N.M. Noren Hooten N. O’Driscoll L. O’Grady T. O’Loghlen A. Ochiya T. Olivier M. Ortiz A. Ortiz L.A. Osteikoetxea X. Østergaard O. Ostrowski M. Park J. Pegtel D.M. Peinado H. Perut F. Pfaffl M.W. Phinney D.G. Pieters B.C.H. Pink R.C. Pisetsky D.S. Pogge von Strandmann E. Polakovicova I. Poon I.K.H. Powell B.H. Prada I. Pulliam L. Quesenberry P. Radeghieri A. Raffai R.L. Raimondo S. Rak J. Ramirez M.I. Raposo G. Rayyan M.S. Regev-Rudzki N. Ricklefs F.L. Robbins P.D. Roberts D.D. Rodrigues S.C. Rohde E. Rome S. Rouschop K.M.A. Rughetti A. Russell A.E. Saá P. Sahoo S. Salas-Huenuleo E. Sánchez C. Saugstad J.A. Saul M.J. Schiffelers R.M. Schneider R. Schøyen T.H. Scott A. Shahaj E. Sharma S. Shatnyeva O. Shekari F. Shelke G.V. Shetty A.K. Shiba K. Siljander P.R.M. Silva A.M. Skowronek A. Snyder O.L. II Soares R.P. Sódar B.W. Soekmadji C. Sotillo J. Stahl P.D. Stoorvogel W. Stott S.L. Strasser E.F. Swift S. Tahara H. Tewari M. Timms K. Tiwari S. Tixeira R. Tkach M. Toh W.S. Tomasini R. Torrecilhas A.C. Tosar J.P. Toxavidis V. Urbanelli L. Vader P. van Balkom B.W.M. van der Grein S.G. Van Deun J. van Herwijnen M.J.C. Van Keuren-Jensen K. van Niel G. van Royen M.E. van Wijnen A.J. Vasconcelos M.H. Vechetti I.J. Jr Veit T.D. Vella L.J. Velot É. Verweij F.J. Vestad B. Viñas J.L. Visnovitz T. Vukman K.V. Wahlgren J. Watson D.C. Wauben M.H.M. Weaver A. Webber J.P. Weber V. Wehman A.M. Weiss D.J. Welsh J.A. Wendt S. Wheelock A.M. Wiener Z. Witte L. Wolfram J. Xagorari A. Xander P. Xu J. Yan X. Yáñez-Mó M. Yin H. Yuana Y. Zappulli V. Zarubova J. Žėkas V. Zhang J. Zhao Z. Zheng L. Zheutlin A.R. Zickler A.M. Zimmermann P. Zivkovic A.M. Zocco D. Zuba-Surma E.K. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the international society for extracellular vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 2018 7 1 1535750 10.1080/20013078.2018.1535750 30637094
    [Google Scholar]
  84. Zhang H. Freitas D. Kim H.S. Fabijanic K. Li Z. Chen H. Mark M.T. Molina H. Martin A.B. Bojmar L. Fang J. Rampersaud S. Hoshino A. Matei I. Kenific C.M. Nakajima M. Mutvei A.P. Sansone P. Buehring W. Wang H. Jimenez J.P. Cohen-Gould L. Paknejad N. Brendel M. Manova-Todorova K. Magalhães A. Ferreira J.A. Osório H. Silva A.M. Massey A. Cubillos-Ruiz J.R. Galletti G. Giannakakou P. Cuervo A.M. Blenis J. Schwartz R. Brady M.S. Peinado H. Bromberg J. Matsui H. Reis C.A. Lyden D. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat. Cell Biol. 2018 20 3 332 343 10.1038/s41556‑018‑0040‑4 29459780
    [Google Scholar]
  85. Al-Husinat L. Araydah M. Al Sharie S. Azzam S. Battaglini D. Alrababah A. Haddad R. Al-Asad K. Dos Santos C.C. Schultz M.J. Cruz F.F. Silva P.L. Rocco P.R.M. Advancing omics technologies in acute respiratory distress syndrome: Paving the way for personalized medicine. Intensive Care Med. Exp. 2025 13 1 61 10.1186/s40635‑025‑00766‑4 40512301
    [Google Scholar]
  86. Yoon J. Kym D. Cho Y.S. Hur J. Yoon D. Longitudinal analysis of ARDS variability and biomarker predictive power in burn patients. Sci. Rep. 2024 14 1 26376 10.1038/s41598‑024‑77188‑x 39487242
    [Google Scholar]
  87. Zhou K. Qin Q. Lu J. Pathophysiological mechanisms of ARDS: A narrative review from molecular to organ-level perspectives. Respir. Res. 2025 26 1 54 10.1186/s12931‑025‑03137‑5 39948645
    [Google Scholar]
  88. Li B. Lin W. Hu R. Bai S. Ruan Y. Fan Y. Qiao S. Wen X. Liu R. Chen H. Cui W. Cai Z. Zhang G. Crosstalk between lung and extrapulmonary organs in sepsis-related acute lung injury/acute respiratory distress syndrome. Ann. Intensive Care 2025 15 1 97 10.1186/s13613‑025‑01513‑4 40658295
    [Google Scholar]
  89. Lv K. Liang Q. Macrophages in sepsis-induced acute lung injury: Exosomal modulation and therapeutic potential. Front. Immunol. 2025 15 1518008 10.3389/fimmu.2024.1518008 39840035
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673407035251122102639
Loading
/content/journals/cmc/10.2174/0109298673407035251122102639
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test