Skip to content
2000
image of Effects of SGLT2 Inhibitors on Circulating Cyclophilin A Levels in Patients with Type 2 Diabetes

Abstract

Objective

This study aimed to evaluate cyclophilin (CypA) levels in patients with diabetes mellitus (DM) before and after treatment. Metabolic variables, such as weight, blood pressure, and plasma glucose, were assessed in these patients.

Methods

This prospective cross-sectional study was conducted over 24 weeks. We included 38 patients with DM. After confirming the diagnosis of type 2 diabetes, SGLT2i (empagliflozin dapagliflozin) therapy was prescribed to the patients. Weight, body mass index (BMI), waist circumference, body fat ratio, fasting plasma glucose, glycated hemoglobin (HbA1c, %), and CypA levels were measured at 0, 12, and 24 weeks. Patients in the drug subgroup were divided into 2 groups: Empagliflozin (Empa, n=16) and Dapagliflozin (Dapa, n=22).

Results

Weight (<0.001), body mass index (<0.001), percentage of body fat (<0.001), diastolic blood pressure (=0.006), fasting plasma glucose (<0.001), HbA1c (<0.001), serum creatinine (<0.001), and CypA (<0.001) levels after the SGLT2i therapy were statistically decreased compared to pre-treatment values in all patients. When comparing drug subgroups, significant decreases in weight (=0.013) and percentage body fat (=0.01) were observed in the Empa group compared with the Dapa group at 24 weeks. Changes in FPG (=0.399), HbA (=0.102), and CypA (=0.329) between the two groups seemed to be similar.

Discussion

In a 24-week study, significant reductions in weight, BMI, body fat percentage, HbA1c, FPG, and diastolic blood pressure with SGLT2i have been reported in those patients. Furthermore, we also observed that cyclophilin A, an oxidative marker of atherosclerosis, plays a destructive role in cardiomyocyte levels, which are decreased during the SGLT2i therapy.

Conclusion

Beyond the improvement of metabolic parameters, SGLT2 treatment reduced CypA levels in patients with DM regardless of drug subgroups. These drugs may further prevent the presence of cardiovascular diseases.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673406989251010070419
2025-10-29
2026-02-21
Loading full text...

Full text loading...

References

  1. Vallon V. Thomson S.C. Targeting renal glucose reabsorption to treat hyperglycaemia: The pleiotropic effects of SGLT2 inhibition. Diabetologia 2017 60 2 215 225 10.1007/s00125‑016‑4157‑3 27878313
    [Google Scholar]
  2. Toyama T. Neuen B.L. Jun M. Ohkuma T. Neal B. Jardine M.J. Heerspink H.L. Wong M.G. Ninomiya T. Wada T. Perkovic V. Effect of SGLT2 inhibitors on cardiovascular, renal and safety outcomes in patients with type 2 diabetes mellitus and chronic kidney disease: A systematic review and meta-analysis. Diabetes Obes. Metab. 2019 21 5 1237 1250 10.1111/dom.13648 30697905
    [Google Scholar]
  3. Ferrannini E. Mark M. Mayoux E. CV protection in the EMPA-REG OUTCOME trial: A “thrifty substrate” hypothesis. Diabetes Care 2016 39 7 1108 1114 10.2337/dc16‑0330 27289126
    [Google Scholar]
  4. McMurray J.J.V. Solomon S.D. Inzucchi S.E. Køber L. Kosiborod M.N. Martinez F.A. Ponikowski P. Sabatine M.S. Anand I.S. Bělohlávek J. Böhm M. Chiang C.E. Chopra V.K. de Boer R.A. Desai A.S. Diez M. Drozdz J. Dukát A. Ge J. Howlett J.G. Katova T. Kitakaze M. Ljungman C.E.A. Merkely B. Nicolau J.C. O’Meara E. Petrie M.C. Vinh P.N. Schou M. Tereshchenko S. Verma S. Held C. DeMets D.L. Docherty K.F. Jhund P.S. Bengtsson O. Sjöstrand M. Langkilde A.M. DAPA-HF Trial Committees and Investigators Dapagliflozin in patients with heart failure and reduced ejection fraction. N. Engl. J. Med. 2019 381 21 1995 2008 10.1056/NEJMoa1911303 31535829
    [Google Scholar]
  5. Anker S.D. Butler J. Filippatos G. Ferreira J.P. Bocchi E. Böhm M. Brunner-La Rocca H.P. Choi D.J. Chopra V. Chuquiure-Valenzuela E. Giannetti N. Gomez-Mesa J.E. Janssens S. Januzzi J.L. Gonzalez-Juanatey J.R. Merkely B. Nicholls S.J. Perrone S.V. Piña I.L. Ponikowski P. Senni M. Sim D. Spinar J. Squire I. Taddei S. Tsutsui H. Verma S. Vinereanu D. Zhang J. Carson P. Lam C.S.P. Marx N. Zeller C. Sattar N. Jamal W. Schnaidt S. Schnee J.M. Brueckmann M. Pocock S.J. Zannad F. Packer M. EMPEROR-Preserved Trial Investigators Empagliflozin in heart failure with a preserved ejection fraction. N. Engl. J. Med. 2021 385 16 1451 1461 10.1056/NEJMoa2107038 34449189
    [Google Scholar]
  6. Salah H.M. Al’Aref S.J. Khan M.S. Al-Hawwas M. Vallurupalli S. Mehta J.L. Mounsey J.P. Greene S.J. McGuire D.K. Lopes R.D. Fudim M. Efficacy and safety of sodium-glucose cotransporter 2 inhibitors initiation in patients with acute heart failure, with and without type 2 diabetes: A systematic review and meta-analysis. Cardiovasc. Diabetol. 2022 21 1 20 10.1186/s12933‑022‑01455‑2 35123480
    [Google Scholar]
  7. Charaya K. Shchekochikhin D. Andreev D. Dyachuk I. Tarasenko S. Poltavskaya M. Mesitskaya D. Bogdanova A. Ananicheva N. Kuzub A. Impact of dapagliflozin treatment on renal function and diuretics use in acute heart failure: A pilot study. Open Heart 2022 9 1 e001936 10.1136/openhrt‑2021‑001936 35609943
    [Google Scholar]
  8. Nigro P. Pompilio G. Capogrossi M.C. Cyclophilin A: A key player for human disease. Cell Death Dis. 2013 4 10 e888 10.1038/cddis.2013.410 24176846
    [Google Scholar]
  9. Tian-Tian Z. Jun-Feng Z. Heng G. Functions of cyclophilin A in atherosclerosis. Exp. Clin. Cardiol. 2013 18 2 e118 e124 23940449
    [Google Scholar]
  10. Volker S.E. Hedrick S.E. Feeney Y.B. Clevenger C.V. Cyclophilin A function in mammary epithelium impacts Jak2/Stat5 signaling, morphogenesis, differentiation, and tumorigenesis in the mammary gland. Cancer Res. 2018 78 14 3877 3887 10.1158/0008‑5472.CAN‑17‑2892 29959151
    [Google Scholar]
  11. Satoh K. Matoba T. Suzuki J. O’Dell M.R. Nigro P. Cui Z. Mohan A. Pan S. Li L. Jin Z.G. Yan C. Abe J. Berk B.C. Cyclophilin A mediates vascular remodeling by promoting inflammation and vascular smooth muscle cell proliferation. Circulation 2008 117 24 3088 3098 10.1161/CIRCULATIONAHA.107.756106 18541741
    [Google Scholar]
  12. Yan J. Zang X. Chen R. Yuan W. Gong J. Wang C. Li Y. The clinical implications of increased cyclophilin A levels in patients with acute coronary syndromes. Clin. Chim. Acta 2012 413 7-8 691 695 10.1016/j.cca.2011.12.009 22209965
    [Google Scholar]
  13. Lascar N. Brown J. Pattison H. Barnett A.H. Bailey C.J. Bellary S. Type 2 Diabetes in adolescents and young adults. Lancet Diabetes Endocrinol. 2018 6 1 69 80 10.1016/S2213‑8587(17)30186‑9 28847479
    [Google Scholar]
  14. Galderisi M. Cosyns B. Edvardsen T. Cardim N. Delgado V. Di Salvo G. Donal E. Sade L.E. Ernande L. Garbi M. Grapsa J. Hagendorff A. Kamp O. Magne J. Santoro C. Stefanidis A. Lancellotti P. Popescu B. Habib G. Flachskampf F.A. Gerber B. Gimelli A. Haugaa K. Standardization of adult transthoracic echocardiography reporting in agreement with recent chamber quantification, diastolic function, and heart valve disease recommendations: An expert consensus document of the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2017 18 12 1301 1310 10.1093/ehjci/jex244 29045589
    [Google Scholar]
  15. Qiu M. Ding L.L. Zhang M. Zhou H.R. Safety of four SGLT2 inhibitors in three chronic diseases: A meta-analysis of large randomized trials of SGLT2 inhibitors. Diab. Vasc. Dis. Res. 2021 18 2 14791641211011016 10.1177/14791641211011016 33887983
    [Google Scholar]
  16. ElSayed N.A. McCoy R.G. Aleppo G. Balapattabi K. Beverly E.A. Briggs Early K. Bruemmer D. Echouffo-Tcheugui J.B. Ekhlaspour L. Garg R. Khunti K. Kushner R.F. Lal R. Lingvay I. Matfin G. Pandya N. Pekas E.J. Pilla S.J. Polsky S. Segal A.R. Seley J.J. Stanton R.C. Bannuru R.R. American Diabetes Association Professional Practice Committee Obesity and weight management for the prevention and treatment of type 2 Diabetes: Standards of care in Diabetes–2025. Diabetes Care 2025 48 1 S167 S180 10.2337/dc25‑S008 39651976
    [Google Scholar]
  17. Granata A. Pesce F. Iacoviello M. Anzaldi M. Amico F. Catalano M. Leonardi G. Gatta C. Costanza G. Corrao S. Gesualdo L. SGLT2 inhibitors: A Broad impact therapeutic option for the nephrologist. Front. Nephrol. 2022 2 867075 10.3389/fneph.2022.867075 37674992
    [Google Scholar]
  18. Chesterman T. Thynne T.R.J. Harms and benefits fo sodium-glucose co-transporter 2 inhibitors. Aust. Prescr. 2020 43 5 168 171 10.18773/austprescr.2020.049 33093744
    [Google Scholar]
  19. Saisho Y. SGLT2 inhibitors: The Star in the treatment of Type 2 Diabetes? Diseases 2020 8 2 14 10.3390/diseases8020014 32403420
    [Google Scholar]
  20. Tikkanen I. Chilton R. Johansen O.E. Potential role of sodium glucose cotransporter 2 inhibitors in the treatment of hypertension. Curr. Opin. Nephrol. Hypertens. 2016 25 2 81 86 10.1097/MNH.0000000000000199 26808705
    [Google Scholar]
  21. Scheen A.J. Pharmacodynamics, efficacy and safety of sodium-glucose co-transporter type 2 (SGLT2) inhibitors for the treatment of type 2 diabetes mellitus. Drugs 2015 75 1 33 59 10.1007/s40265‑014‑0337‑y 25488697
    [Google Scholar]
  22. Kohan D.E. Fioretto P. Tang W. List J.F. Long-term study of patients with type 2 diabetes and moderate renal impairment shows that dapagliflozin reduces weight and blood pressure but does not improve glycemic control. Kidney Int. 2014 85 4 962 971 10.1038/ki.2013.356 24067431
    [Google Scholar]
  23. Cook N.R. Cohen J. Hebert P.R. Taylor J.O. Hennekens C.H. Implications of small reductions in diastolic blood pressure for primary prevention. Arch. Intern. Med. 1995 155 7 701 709 10.1001/archinte.1995.00430070053006 7695458
    [Google Scholar]
  24. Hardy S.T. Loehr L.R. Butler K.R. Chakladar S. Chang P.P. Folsom A.R. Heiss G. MacLehose R.F. Matsushita K. Avery C.L. Reducing the blood pressure-related burden of cardiovascular disease: Impact of achievable improvements in blood pressure prevention and control. J. Am. Heart Assoc. 2015 4 10 e002276 10.1161/JAHA.115.002276 26508742
    [Google Scholar]
  25. Sjöström C.D. Hashemi M. Sugg J. Ptaszynska A. Johnsson E. Dapagliflozin-induced weight loss affects 24-week glycated haemoglobin and blood pressure levels. Diabetes Obes. Metab. 2015 17 8 809 812 10.1111/dom.12500 25997813
    [Google Scholar]
  26. Weber M.A. Mansfield T.A. Alessi F. Iqbal N. Parikh S. Ptaszynska A. Effects of dapagliflozin on blood pressure in hypertensive diabetic patients on renin–angiotensin system blockade. Blood Press. 2016 25 2 93 103 10.3109/08037051.2015.1116258 26623980
    [Google Scholar]
  27. Brown E. Wilding J.P.H. Barber T.M. Alam U. Cuthbertson D.J. Weight loss variability with SGLT2 inhibitors and GLP-1 receptor agonists in type 2 diabetes mellitus and obesity: Mechanistic possibilities. Obes. Rev. 2019 20 6 816 828 10.1111/obr.12841 30972878
    [Google Scholar]
  28. Pasternak B. Ueda P. Eliasson B. Svensson A.M. Franzén S. Gudbjörnsdottir S. Hveem K. Jonasson C. Wintzell V. Melbye M. Svanström H. Use of sodium glucose cotransporter 2 inhibitors and risk of major cardiovascular events and heart failure: Scandinavian register based cohort study. BMJ 2019 366 l4772 10.1136/bmj.l4772 31467044
    [Google Scholar]
  29. Petito-da-Silva T.I. Souza-Mello V. Barbosa-da-Silva S. Empaglifozin mitigates NAFLD in high-fat-fed mice by alleviating insulin resistance, lipogenesis and ER stress. Mol. Cell. Endocrinol. 2019 498 110539 10.1016/j.mce.2019.110539 31419466
    [Google Scholar]
  30. Omar M. Jensen J. Frederiksen P.H. Kistorp C. Videbæk L. Poulsen M.K. Möller S. Ali M. Gustafsson F. Køber L. Borlaug B.A. Schou M. Møller J.E. Effect of empagliflozin on hemodynamics in patients with heart failure and reduced ejection fraction. J. Am. Coll. Cardiol. 2020 76 23 2740 2751 10.1016/j.jacc.2020.10.005 33272368
    [Google Scholar]
  31. Wang L. Liu M. Yin F. Wang Y. Li X. Wu Y. Ye C. Liu J. Trilobatin, a Novel SGLT1/2 Inhibitor, selectively induces the proliferation of human hepatoblastoma cells. Molecules 2019 24 18 3390 10.3390/molecules24183390 31540429
    [Google Scholar]
  32. Cha S.A. Park Y.M. Yun J.S. Lim T.S. Song K.H. Yoo K.D. Ahn Y.B. Ko S.H. A comparison of effects of DPP-4 inhibitor and SGLT2 inhibitor on lipid profile in patients with type 2 diabetes. Lipids Health Dis. 2017 16 1 58 10.1186/s12944‑017‑0443‑4 28403877
    [Google Scholar]
  33. Wallenius K. Kroon T. Hagstedt T. Löfgren L. Sörhede-Winzell M. Boucher J. Lindén D. Oakes N.D. The SGLT2 inhibitor dapagliflozin promotes systemic FFA mobilization, enhances hepatic β-oxidation, and induces ketosis. J. Lipid Res. 2022 63 3 100176 10.1016/j.jlr.2022.100176 35120993
    [Google Scholar]
  34. Mende C.W. Chronic Kidney Disease and SGLT2 Inhibitors: A review of the evolving treatment landscape. Adv. Ther. 2022 39 1 148 164 10.1007/s12325‑021‑01994‑2 34846711
    [Google Scholar]
  35. Kaze A.D. Zhuo M. Kim S.C. Patorno E. Paik J.M. Association of SGLT2 inhibitors with cardiovascular, kidney, and safety outcomes among patients with diabetic kidney disease: A meta-analysis. Cardiovasc. Diabetol. 2022 21 1 47 10.1186/s12933‑022‑01476‑x 35321742
    [Google Scholar]
  36. Vallon V. Rose M. Gerasimova M. Satriano J. Platt K.A. Koepsell H. Cunard R. Sharma K. Thomson S.C. Rieg T. Knockout of Na-glucose transporter SGLT2 attenuates hyperglycemia and glomerular hyperfiltration but not kidney growth or injury in diabetes mellitus. Am. J. Physiol. Renal Physiol. 2013 304 2 F156 F167 10.1152/ajprenal.00409.2012 23152292
    [Google Scholar]
  37. Tonneijck L. Muskiet M.H.A. Smits M.M. van Bommel E.J. Heerspink H.J.L. van Raalte D.H. Joles J.A. Glomerular hyperfiltration in diabetes: Mechanisms, clinical significance, and treatment. J. Am. Soc. Nephrol. 2017 28 4 1023 1039 10.1681/ASN.2016060666 28143897
    [Google Scholar]
  38. Meng Z. Liu X. Li T. Fang T. Cheng Y. Han L. Sun B. Chen L. The SGLT2 inhibitor empagliflozin negatively regulates IL-17/IL-23 axis-mediated inflammatory responses in T2DM with NAFLD via the AMPK/mTOR/autophagy pathway. Int. Immunopharmacol. 2021 94 107492 10.1016/j.intimp.2021.107492 33647823
    [Google Scholar]
  39. La Grotta R. Frigé C. Matacchione G. Olivieri F. de Candia P. Ceriello A. Prattichizzo F. Repurposing SGLT-2 inhibitors to target aging: Available evidence and molecular mechanisms. Int. J. Mol. Sci. 2022 23 20 12325 10.3390/ijms232012325 36293181
    [Google Scholar]
  40. Fu J. Xu H. Wu F. Tu Q. Dong X. Xie H. Cao Z. Empagliflozin inhibits macrophage inflammation through AMPK signaling pathway and plays an anti-atherosclerosis role. Int. J. Cardiol. 2022 367 56 62 10.1016/j.ijcard.2022.07.048 35931206
    [Google Scholar]
  41. Ramachandran S. Venugopal A. K S. G R. Charles S. G D. Chandran N.S.P. Mullassari A. Pillai M.R. Kartha C.C. Proteomic profiling of high glucose primed monocytes identifies cyclophilin A as a potential secretory marker of inflammation in type 2 diabetes. Proteomics 2012 12 18 2808 2821 10.1002/pmic.201100586 22930659
    [Google Scholar]
  42. Gegunde S. Alfonso A. Alvariño R. Pérez-Fuentes N. Bayón-Lorenzo J. Alonso E. Ocaranza-Sánchez R. Abellás-Sequeiros R.A. Santás-Álvarez M. Vieytes M.R. Juanatey-González C. Botana L.M. Association of cyclophilins and cardiovascular risk factors in coronary artery disease. Front. Physiol. 2023 14 1127468 10.3389/fphys.2023.1127468 36935755
    [Google Scholar]
  43. Tsai S.F. Su C.W. Wu M.J. Chen C.H. Fu C.P. Liu C.S. Hsieh M. Urinary Cyclophilin A as a new marker for diabetic nephropathy. Medicine 2015 94 42 e1802 10.1097/MD.0000000000001802 26496315
    [Google Scholar]
  44. Chiu P.F. Su S.L. Tsai C.C. Wu C.L. Kuo C.L. Kor C.T. Chang C.C. Liu C.S. Cyclophilin A and CD147 associate with progression of diabetic nephropathy. Free Radic. Res. 2018 52 11-12 1456 1463 10.1080/10715762.2018.1523545 30572748
    [Google Scholar]
  45. Heerspink H.J.L. Perco P. Mulder S. Leierer J. Hansen M.K. Heinzel A. Mayer G. Canagliflozin reduces inflammation and fibrosis biomarkers: A potential mechanism of action for beneficial effects of SGLT2 inhibitors in diabetic kidney disease. Diabetologia 2019 62 7 1154 1166 10.1007/s00125‑019‑4859‑4 31001673
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673406989251010070419
Loading
/content/journals/cmc/10.2174/0109298673406989251010070419
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test