Skip to content
2000
image of Exploring the Causal Relationship of Metabolites in Breast Cancer

Abstract

Background

Observational studies have suggested associations between circulating metabolites and breast cancer (BC) risk, but the direction and causality of these relationships remain unclear due to confounding and reverse causation. Therefore, we aimed to evaluate the potential causal effects of 1,400 circulating metabolites on BC subtypes using Mendelian randomization (MR) based on GWAS data from European-ancestry populations.

Methods

Two-sample and reverse MR analyses were performed to explore potential causal links between metabolites and BC from the FinnGen and Breast Cancer Association Consortium (BCAC) cohorts. The inverse-variance weighted (IVW) approach served as the main analytical method to evaluate these associations. To further ensure the robustness and credibility of the MR findings, sensitivity analyses were conducted, incorporating leave-one-out procedures, the Cochran's Q test, and the MR-Egger intercept test.

Results

Following correction using the False Discovery Rate (FDR) method at a significance level of 0.10, we identified 5alpha-pregnan-3beta,20alpha-diol monosulfate levels ( = 6.7714*10-5, PFDR = 0.0798) and Myristoleate (14:1n5) levels ( =0.0002, PFDR = 0.0798) were associated with an increased risk of ER+ BC. Conversely, the Caffeine to paraxanthine ratio ( =0.0001, PFDR = 0.0798) was associated with a reduced risk. In the reverse MR analysis, interactions were observed between Eicosanedioate (C20-DC) levels, Piperine levels, Caffeine to theobromine ratio, Indolepropionate levels, 1-oleoyl-GPC (18:1) levels, and Oleoylcarnitine levels with BC. Notably, the -values of intercept terms in MR-Egger regression all exceeded 0.05, suggesting an absence of potential horizontal pleiotropy.

Discussion

These findings suggested that hormone-related, lipid-related, and diet-derived metabolites might play subtype-specific roles in breast cancer development. The identified metabolites provided mechanistic insights and highlighted potential biological pathways that warrant further functional validation. They may also serve as preliminary biomarkers for future metabolomic and translational research.

Conclusion

Our MR study identified several metabolites that may be causally associated with BC risk. These findings offer potential candidates for further mechanistic investigation and highlight the importance of subtype-specific approaches in metabolomics research.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673406597251018190226
2026-01-09
2026-02-21
Loading full text...

Full text loading...

References

  1. Kocarnik J.M. Compton K. Dean F.E. Fu W. Gaw B.L. Harvey J.D. Henrikson H.J. Lu D. Pennini A. Xu R. Ababneh E. Abbasi-Kangevari M. Abbastabar H. Abd-Elsalam S.M. Abdoli A. Abedi A. Abidi H. Abolhassani H. Adedeji I.A. Adnani Q.E.S. Advani S.M. Afzal M.S. Aghaali M. Ahinkorah B.O. Ahmad S. Ahmad T. Ahmadi A. Ahmadi S. Ahmed Rashid T. Ahmed Salih Y. Akalu G.T. Aklilu A. Akram T. Akunna C.J. Al Hamad H. Alahdab F. Al-Aly Z. Ali S. Alimohamadi Y. Alipour V. Aljunid S.M. Alkhayyat M. Almasi-Hashiani A. Almasri N.A. Al-Maweri S.A.A. Almustanyir S. Alonso N. Alvis-Guzman N. Amu H. Anbesu E.W. Ancuceanu R. Ansari F. Ansari-Moghaddam A. Antwi M.H. Anvari D. Anyasodor A.E. Aqeel M. Arabloo J. Arab-Zozani M. Aremu O. Ariffin H. Aripov T. Arshad M. Artaman A. Arulappan J. Asemi Z. Asghari Jafarabadi M. Ashraf T. Atorkey P. Aujayeb A. Ausloos M. Awedew A.F. Ayala Quintanilla B.P. Ayenew T. Azab M.A. Azadnajafabad S. Azari Jafari A. Azarian G. Azzam A.Y. Badiye A.D. Bahadory S. Baig A.A. Baker J.L. Balakrishnan S. Banach M. Bärnighausen T.W. Barone-Adesi F. Barra F. Barrow A. Behzadifar M. Belgaumi U.I. Bezabhe W.M.M. Bezabih Y.M. Bhagat D.S. Bhagavathula A.S. Bhardwaj N. Bhardwaj P. Bhaskar S. Bhattacharyya K. Bhojaraja V.S. Bibi S. Bijani A. Biondi A. Bisignano C. Bjørge T. Bleyer A. Blyuss O. Bolarinwa O.A. Bolla S.R. Braithwaite D. Brar A. Brenner H. Bustamante-Teixeira M.T. Butt N.S. Butt Z.A. Caetano dos Santos F.L. Cao Y. Carreras G. Catalá-López F. Cembranel F. Cerin E. Cernigliaro A. Chakinala R.C. Chattu S.K. Chattu V.K. Chaturvedi P. Chimed-Ochir O. Cho D.Y. Christopher D.J. Chu D.T. Chung M.T. Conde J. Cortés S. Cortesi P.A. Costa V.M. Cunha A.R. Dadras O. Dagnew A.B. Dahlawi S.M.A. Dai X. Dandona L. Dandona R. Darwesh A.M. das Neves J. De la Hoz F.P. Demis A.B. Denova-Gutiérrez E. Dhamnetiya D. Dhimal M.L. Dhimal M. Dianatinasab M. Diaz D. Djalalinia S. Do H.P. Doaei S. Dorostkar F. dos Santos Figueiredo F.W. Driscoll T.R. Ebrahimi H. Eftekharzadeh S. El Tantawi M. El-Abid H. Elbarazi I. Elhabashy H.R. Elhadi M. El-Jaafary S.I. Eshrati B. Eskandarieh S. Esmaeilzadeh F. Etemadi A. Ezzikouri S. Faisaluddin M. Faraon E.J.A. Fares J. Farzadfar F. Feroze A.H. Ferrero S. Ferro Desideri L. Filip I. Fischer F. Fisher J.L. Foroutan M. Fukumoto T. Gaal P.A. Gad M.M. Gadanya M.A. Gallus S. Gaspar Fonseca M. Getachew Obsa A. Ghafourifard M. Ghashghaee A. Ghith N. Gholamalizadeh M. Gilani S.A. Ginindza T.G. Gizaw A.T.T. Glasbey J.C. Golechha M. Goleij P. Gomez R.S. Gopalani S.V. Gorini G. Goudarzi H. Grosso G. Gubari M.I.M. Guerra M.R. Guha A. Gunasekera D.S. Gupta B. Gupta V.B. Gupta V.K. Gutiérrez R.A. Hafezi-Nejad N. Haider M.R. Haj-Mirzaian A. Halwani R. Hamadeh R.R. Hameed S. Hamidi S. Hanif A. Haque S. Harlianto N.I. Haro J.M. Hasaballah A.I. Hassanipour S. Hay R.J. Hay S.I. Hayat K. Heidari G. Heidari M. Herrera-Serna B.Y. Herteliu C. Hezam K. Holla R. Hossain M.M. Hossain M.B.H. Hosseini M.S. Hosseini M. Hosseinzadeh M. Hostiuc M. Hostiuc S. Househ M. Hsairi M. Huang J. Hugo F.N. Hussain R. Hussein N.R. Hwang B.F. Iavicoli I. Ibitoye S.E. Ida F. Ikuta K.S. Ilesanmi O.S. Ilic I.M. Ilic M.D. Irham L.M. Islam J.Y. Islam R.M. Islam S.M.S. Ismail N.E. Isola G. Iwagami M. Jacob L. Jain V. Jakovljevic M.B. Javaheri T. Jayaram S. Jazayeri S.B. Jha R.P. Jonas J.B. Joo T. Joseph N. Joukar F. Jürisson M. Kabir A. Kahrizi D. Kalankesh L.R. Kalhor R. Kaliyadan F. Kalkonde Y. Kamath A. Kameran Al-Salihi N. Kandel H. Kapoor N. Karch A. Kasa A.S. Katikireddi S.V. Kauppila J.H. Kavetskyy T. Kebede S.A. Keshavarz P. Keykhaei M. Khader Y.S. Khalilov R. Khan G. Khan M. Khan M.N. Khan M.A.B. Khang Y.H. Khater A.M. Khayamzadeh M. Kim G.R. Kim Y.J. Kisa A. Kisa S. Kissimova-Skarbek K. Kopec J.A. Koteeswaran R. Koul P.A. Koulmane Laxminarayana S.L. Koyanagi A. Kucuk Bicer B. Kugbey N. Kumar G.A. Kumar N. Kumar N. Kurmi O.P. Kutluk T. La Vecchia C. Lami F.H. Landires I. Lauriola P. Lee S. Lee S.W.H. Lee W.C. Lee Y.H. Leigh J. Leong E. Li J. Li M.C. Liu X. Loureiro J.A. Lunevicius R. Magdy Abd El Razek M. Majeed A. Makki A. Male S. Malik A.A. Mansournia M.A. Martini S. Masoumi S.Z. Mathur P. McKee M. Mehrotra R. Mendoza W. Menezes R.G. Mengesha E.W. Mesregah M.K. Mestrovic T. Miao Jonasson J. Miazgowski B. Miazgowski T. Michalek I.M. Miller T.R. Mirzaei H. Mirzaei H.R. Misra S. Mithra P. Moghadaszadeh M. Mohammad K.A. Mohammad Y. Mohammadi M. Mohammadi S.M. Mohammadian-Hafshejani A. Mohammed S. Moka N. Mokdad A.H. Molokhia M. Monasta L. Moni M.A. Moosavi M.A. Moradi Y. Moraga P. Morgado-da-Costa J. Morrison S.D. Mosapour A. Mubarik S. Mwanri L. Nagarajan A.J. Nagaraju S.P. Nagata C. Naimzada M.D. Nangia V. Naqvi A.A. Narasimha Swamy S. Ndejjo R. Nduaguba S.O. Negoi I. Negru S.M. Neupane Kandel S. Nguyen C.T. Nguyen H.L.T. Niazi R.K. Nnaji C.A. Noor N.M. Nuñez-Samudio V. Nzoputam C.I. Oancea B. Ochir C. Odukoya O.O. Ogbo F.A. Olagunju A.T. Olakunde B.O. Omar E. Omar Bali A. Omonisi A.E.E. Ong S. Onwujekwe O.E. Orru H. Ortega-Altamirano D.V. Otstavnov N. Otstavnov S.S. Owolabi M.O. P A M. Padubidri J.R. Pakshir K. Pana A. Panagiotakos D. Panda-Jonas S. Pardhan S. Park E.C. Park E.K. Pashazadeh Kan F. Patel H.K. Patel J.R. Pati S. Pattanshetty S.M. Paudel U. Pereira D.M. Pereira R.B. Perianayagam A. Pillay J.D. Pirouzpanah S. Pishgar F. Podder I. Postma M.J. Pourjafar H. Prashant A. Preotescu L. Rabiee M. Rabiee N. Radfar A. Radhakrishnan R.A. Radhakrishnan V. Rafiee A. Rahim F. Rahimzadeh S. Rahman M. Rahman M.A. Rahmani A.M. Rajai N. Rajesh A. Rakovac I. Ram P. Ramezanzadeh K. Ranabhat K. Ranasinghe P. Rao C.R. Rao S.J. Rawassizadeh R. Razeghinia M.S. Renzaho A.M.N. Rezaei N. Rezaei N. Rezapour A. Roberts T.J. Rodriguez J.A.B. Rohloff P. Romoli M. Ronfani L. Roshandel G. Rwegerera G.M. S M. Sabour S. Saddik B. Saeed U. Sahebkar A. Sahoo H. Salehi S. Salem M.R. Salimzadeh H. Samaei M. Samy A.M. Sanabria J. Sankararaman S. Santric-Milicevic M.M. Sardiwalla Y. Sarveazad A. Sathian B. Sawhney M. Saylan M. Schneider I.J.C. Sekerija M. Seylani A. Shafaat O. Shaghaghi Z. Shaikh M.A. Shamsoddin E. Shannawaz M. Sharma R. Sheikh A. Sheikhbahaei S. Shetty A. Shetty J.K. Shetty P.H. Shibuya K. Shirkoohi R. Shivakumar K.M. Shivarov V. Siabani S. Siddappa Malleshappa S.K. Silva D.A.S. Singh J.A. Sintayehu Y. Skryabin V.Y. Skryabina A.A. Soeberg M.J. Sofi-Mahmudi A. Sotoudeh H. Steiropoulos P. Straif K. Subedi R. Sufiyan M.B. Sultan I. Sultana S. Sur D. Szerencsés V. Szócska M. Tabarés-Seisdedos R. Tabuchi T. Tadbiri H. Taherkhani A. Takahashi K. Talaat I.M. Tan K.K. Tat V.Y. Tedla B.A.A. Tefera Y.G. Tehrani-Banihashemi A. Temsah M.H. Tesfay F.H. Tessema G.A. Thapar R. Thavamani A. Thoguluva Chandrasekar V. Thomas N. Tohidinik H.R. Touvier M. Tovani-Palone M.R. Traini E. Tran B.X. Tran K.B. Tran M.T.N. Tripathy J.P. Tusa B.S. Ullah I. Ullah S. Umapathi K.K. Unnikrishnan B. Upadhyay E. Vacante M. Vaezi M. Valadan Tahbaz S. Velazquez D.Z. Veroux M. Violante F.S. Vlassov V. Vo B. Volovici V. Vu G.T. Waheed Y. Wamai R.G. Ward P. Wen Y.F. Westerman R. Winkler A.S. Yadav L. Yahyazadeh Jabbari S.H. Yang L. Yaya S. Yazie T.S.Y. Yeshaw Y. Yonemoto N. Younis M.Z. Yousefi Z. Yu C. Yuce D. Yunusa I. Zadnik V. Zare F. Zastrozhin M.S. Zastrozhina A. Zhang J. Zhong C. Zhou L. Zhu C. Ziapour A. Zimmermann I.R. Fitzmaurice C. Murray C.J.L. Force L.M. Global Burden of Disease 2019 Cancer Collaboration Cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life years for 29 cancer groups from 2010 to 2019. JAMA Oncol. 2022 8 3 420 444 10.1001/jamaoncol.2021.6987 34967848
    [Google Scholar]
  2. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  3. Bar N. Korem T. Weissbrod O. Zeevi D. Rothschild D. Leviatan S. Kosower N. Lotan-Pompan M. Weinberger A. Le Roy C.I. Menni C. Visconti A. Falchi M. Spector T.D. Vestergaard H. Arumugam M. Hansen T. Allin K. Hansen T. Hong M-G. Schwenk J. Haussler R. Dale M. Giorgino T. Rodriquez M. Perry M. Nice R. McDonald T. Hattersley A. Jones A. Graefe-Mody U. Baum P. Grempler R. Thomas C.E. Masi F.D. Brorsson C.A. Mazzoni G. Allesøe R. Rasmussen S. Gudmundsdóttir V. Nielsen A.M. Banasik K. Tsirigos K. Nilsson B. Pedersen H. Brunak S. Karaderi T. Lundgaard A.T. Johansen J. Gupta R. Sackett P.W. Tillner J. Lehr T. Scherer N. Dings C. Sihinevich I. Loftus H. Cabrelli L. McEvoy D. Mari A. Bizzotto R. Tura A. ’t Hart L. Dekkers K. Leeuwen N. Slieker R. Rutters F. Beulens J. Nijpels G. Koopman A. Oort S. Groeneveld L. Groop L. Elders P. Viñuela A. Ramisch A. Dermitzakis E. Ehrhardt B. Jennison C. Froguel P. Canouil M. Boneford A. McVittie I. Wake D. Frau F. Staerfeldt H-H. Adragni K. Thomas M. Wu H. Pavo I. Steckel-Hamann B. Thomsen H. Giordano G.N. Fitipaldi H. Ridderstråle M. Kurbasic A. Pasdar N.A. Pomares-Millan H. Mutie P. Koivula R. McRobert N. McCarthy M. Wesolowska-Andersen A. Mahajan A. Abdalla M. Fernandez J. Holl R. Heggie A. Deshmukh H. Hennige A. Bianzano S. Thorand B. Sharma S. Grallert H. Adam J. Troll M. Fritsche A. Hill A. Thorne C. Hudson M. Kuulasmaa T. Vangipurapu J. Laakso M. Cederberg H. Kokkola T. Jiao Y. Gough S. Robertson N. Verkindt H. Raverdi V. Caiazzo R. Pattou F. White M. Donnelly L. Brown A. Palmer C. Davtian D. Dawed A. Forgie I. Pearson E. Ruetten H. Musholt P. Bell J. Thomas E.L. Whitcher B. Haid M. Nicolay C. Mourby M. Kaye J. Shah N. Teare H. Frost G. Jablonka B. Uhlen M. Eriksen R. Vogt J. Dutta A. Jonsson A. Engelbrechtsen L. Forman A. Sondertoft N. de Preville N. Baltauss T. Walker M. Gassenhuber J. Klintenberg M. Bergstrom M. Ferrer J. Adamski J. Franks P.W. Pedersen O. Segal E. IMI DIRECT consortium A reference map of potential determinants for the human serum metabolome. Nature 2020 588 7836 135 140 10.1038/s41586‑020‑2896‑2 33177712
    [Google Scholar]
  4. Lee W.J. Hase K. Gut microbiota–generated metabolites in animal health and disease. Nat. Chem. Biol. 2014 10 6 416 424 10.1038/nchembio.1535 24838170
    [Google Scholar]
  5. Pietzner M. Stewart I.D. Raffler J. Khaw K.T. Michelotti G.A. Kastenmüller G. Wareham N.J. Langenberg C. Plasma metabolites to profile pathways in noncommunicable disease multimorbidity. Nat. Med. 2021 27 3 471 479 10.1038/s41591‑021‑01266‑0 33707775
    [Google Scholar]
  6. Wishart D.S. Feunang Y.D. Marcu A. Guo A.C. Liang K. Vázquez-Fresno R. Sajed T. Johnson D. Li C. Karu N. Sayeeda Z. Lo E. Assempour N. Berjanskii M. Singhal S. Arndt D. Liang Y. Badran H. Grant J. Serra-Cayuela A. Liu Y. Mandal R. Neveu V. Pon A. Knox C. Wilson M. Manach C. Scalbert A. HMDB 4.0: The human metabolome database for 2018. Nucleic Acids Res. 2018 46 D1 D608 D617 10.1093/nar/gkx1089 29140435
    [Google Scholar]
  7. Mrowiec K. Debik J. Jelonek K. Kurczyk A. Ponge L. Wilk A. Krzempek M. Giskeødegård G.F. Bathen T.F. Widłak P. Profiling of serum metabolome of breast cancer: Multi-cancer features discriminate between healthy women and patients with breast cancer. Front. Oncol. 2024 14 1377373 10.3389/fonc.2024.1377373 38646441
    [Google Scholar]
  8. His M. Gunter M.J. Keski-Rahkonen P. Rinaldi S. Application of metabolomics to epidemiologic studies of breast cancer: New perspectives for etiology and prevention. J. Clin. Oncol. 2024 42 1 103 115 10.1200/JCO.22.02754 37944067
    [Google Scholar]
  9. Shakartalla S.B. Ashmawy N.S. Semreen M.H. Fayed B. Al Shareef Z.M. Jayakumar M.N. Ibrahim S. Rahmani M. Hamdy R. Soliman S.S.M. 1H-NMR metabolomics analysis identifies hypoxanthine as a novel metastasis-associated metabolite in breast cancer. Sci. Rep. 2024 14 1 253 10.1038/s41598‑023‑50866‑y 38167685
    [Google Scholar]
  10. Subramani R. Poudel S. Smith K.D. Estrada A. Lakshmanaswamy R. Metabolomics of breast cancer: A review. Metabolites 2022 12 7 643 10.3390/metabo12070643 35888767
    [Google Scholar]
  11. Xiao Y. Ma D. Yang Y.S. Yang F. Ding J.H. Gong Y. Jiang L. Ge L.P. Wu S.Y. Yu Q. Zhang Q. Bertucci F. Sun Q. Hu X. Li D.Q. Shao Z.M. Jiang Y.Z. Comprehensive metabolomics expands precision medicine for triple-negative breast cancer. Cell Res. 2022 32 5 477 490 10.1038/s41422‑022‑00614‑0 35105939
    [Google Scholar]
  12. Dai Q. Xie P. Tan H. Zhang J. Wang F. Lei B. Cai Z. Metabolomics and Lipidomics with mass spectrometry imaging reveal mechanistic insights into dibutyl phthalate-promoted proliferation of breast cancer cell spheroids. Environ. Sci. Technol. Lett. 2024 11 3 208 215 10.1021/acs.estlett.4c00048
    [Google Scholar]
  13. Smith G.D. Ebrahim S. Mendelian randomization: prospects, potentials, and limitations. Int. J. Epidemiol. 2004 33 1 30 42 10.1093/ije/dyh132 15075143
    [Google Scholar]
  14. Chen Y. Lu T. Pettersson-Kymmer U. Stewart I.D. Butler-Laporte G. Nakanishi T. Cerani A. Liang K.Y.H. Yoshiji S. Willett J.D.S. Su C.Y. Raina P. Greenwood C.M.T. Farjoun Y. Forgetta V. Langenberg C. Zhou S. Ohlsson C. Richards J.B. Genomic atlas of the plasma metabolome prioritizes metabolites implicated in human diseases. Nat. Genet. 2023 55 1 44 53 10.1038/s41588‑022‑01270‑1 36635386
    [Google Scholar]
  15. Burgess S. Butterworth A. Thompson S.G. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet. Epidemiol. 2013 37 7 658 665 10.1002/gepi.21758 24114802
    [Google Scholar]
  16. Bowden J. Davey Smith G. Haycock P.C. Burgess S. Consistent estimation in mendelian randomization with some invalid instruments using a weighted median estimator. Genet. Epidemiol. 2016 40 4 304 314 10.1002/gepi.21965 27061298
    [Google Scholar]
  17. Verbanck M. Chen C.Y. Neale B. Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat. Genet. 2018 50 5 693 698 10.1038/s41588‑018‑0099‑7 29686387
    [Google Scholar]
  18. Wang X. Gao H. Zeng Y. Chen J. A Mendelian analysis of the relationships between immune cells and breast cancer. Front. Oncol. 2024 14 1341292 10.3389/fonc.2024.1341292 38327747
    [Google Scholar]
  19. Yavorska O.O. Burgess S. MendelianRandomization: An R package for performing Mendelian randomization analyses using summarized data. Int. J. Epidemiol. 2017 46 6 1734 1739 10.1093/ije/dyx034 28398548
    [Google Scholar]
  20. Feng J. Li L. Zhang N. Liu J. Zhang L. Gao H. Wang G. Li Y. Zhang Y. Li X. Liu D. Lu J. Huang B. Androgen and AR contribute to breast cancer development and metastasis: An insight of mechanisms. Oncogene 2017 36 20 2775 2790 10.1038/onc.2016.432 27893717
    [Google Scholar]
  21. Cochrane D.R. Bernales S. Jacobsen B.M. Cittelly D.M. Howe E.N. D’Amato N.C. Spoelstra N.S. Edgerton S.M. Jean A. Guerrero J. Gómez F. Medicherla S. Alfaro I.E. McCullagh E. Jedlicka P. Torkko K.C. Thor A.D. Elias A.D. Protter A.A. Richer J.K. Role of the androgen receptor in breast cancer and preclinical analysis of enzalutamide. Breast Cancer Res. 2014 16 1 R7 10.1186/bcr3599 24451109
    [Google Scholar]
  22. Key T.J. Appleby P.N. Reeves G.K. Roddam A.W. Helzlsouer K.J. Alberg A.J. Rollison D.E. Dorgan J.F. Brinton L.A. Overvad K. Kaaks R. Trichopoulou A. Clavel-Chapelon F. Panico S. Duell E.J. Peeters P.H. Rinaldi S. Fentiman I.S. Dowsett M. Manjer J. Lenner P. Hallmans G. Baglietto L. English D.R. Giles G.G. Hopper J.L. Severi G. Morris H.A. Hankinson S.E. Tworoger S.S. Koenig K. Zeleniuch-Jacquotte A. Arslan A.A. Toniolo P. Shore R.E. Krogh V. Micheli A. Berrino F. Barrett-Connor E. Laughlin G.A. Kabuto M. Akiba S. Stevens R.G. Neriishi K. Land C.E. Cauley J.A. Lui L.Y. Cummings S.R. Gunter M.J. Rohan T.E. Strickler H.D. Endogenous Hormones and Breast Cancer Collaborative Group Circulating sex hormones and breast cancer risk factors in postmenopausal women: Reanalysis of 13 studies. Br. J. Cancer 2011 105 5 709 722 10.1038/bjc.2011.254 21772329
    [Google Scholar]
  23. Schütze M. Boeing H. Pischon T. Rehm J. Kehoe T. Gmel G. Olsen A. Tjønneland A.M. Dahm C.C. Overvad K. Clavel-Chapelon F. Boutron-Ruault M.C. Trichopoulou A. Benetou V. Zylis D. Kaaks R. Rohrmann S. Palli D. Berrino F. Tumino R. Vineis P. Rodríguez L. Agudo A. Sánchez M.J. Dorronsoro M. Chirlaque M.D. Barricarte A. Peeters P.H. van Gils C.H. Khaw K.T. Wareham N. Allen N.E. Key T.J. Boffetta P. Slimani N. Jenab M. Romaguera D. Wark P.A. Riboli E. Bergmann M.M. Alcohol attributable burden of incidence of cancer in eight European countries based on results from prospective cohort study. BMJ 2011 342 apr07 1 d1584 10.1136/bmj.d1584 21474525
    [Google Scholar]
  24. Guo Z. Bergeron K.F. Lingrand M. Mounier C. Unveiling the MUFA–Cancer Connection: Insights from endogenous and exogenous perspectives. Int. J. Mol. Sci. 2023 24 12 9921 10.3390/ijms24129921 37373069
    [Google Scholar]
  25. Wang Y. Liu F. Sun L. Jia Y. Yang P. Guo D. Shi M. Wang A. Chen G.C. Zhang Y. Zhu Z. Association between human blood metabolome and the risk of breast cancer. Breast Cancer Res. 2023 25 1 9 10.1186/s13058‑023‑01609‑4 36694207
    [Google Scholar]
  26. Feng Y. Wang R. Li C. Cai X. Huo Z. Liu Z. Ge F. Huang C. Lu Y. Zhong R. Li J. Cheng B. Liang H. Xiong S. Mao X. Chen Y. Lan R. Wen Y. Peng H. Jiang Y. Su Z. Wu X. He J. Liang W. Causal effects of genetically determined metabolites on cancers included lung, breast, ovarian cancer, and glioma: A Mendelian randomization study. Transl. Lung Cancer Res. 2022 11 7 1302 1314 10.21037/tlcr‑22‑34 35958335
    [Google Scholar]
  27. Koundouros N. Poulogiannis G. Reprogramming of fatty acid metabolism in cancer. Br. J. Cancer 2020 122 1 4 22 10.1038/s41416‑019‑0650‑z 31819192
    [Google Scholar]
  28. Iguchi K. Okumura N. Usui S. Sajiki H. Hirota K. Hirano K. Myristoleic acid, a cytotoxic component in the extract from Serenoa repens, induces apoptosis and necrosis in human prostatic LNCaP cells. Prostate 2001 47 1 59 65 10.1002/pros.1047 11304730
    [Google Scholar]
  29. Lim J.N. Oh J.J. Wang T. Lee J.S. Kim S.H. Kim Y.J. Lee H.G. Trans-11 18:1 vaccenic acid (TVA) has a direct anti-carcinogenic effect on MCF-7 human mammary adenocarcinoma cells. Nutrients 2014 6 2 627 636 10.3390/nu6020627 24518825
    [Google Scholar]
  30. Song J. Wang Y. Fan X. Wu H. Han J. Yang M. Lu L. Nie G. Trans-vaccenic acid inhibits proliferation and induces apoptosis of human nasopharyngeal carcinoma cells via a mitochondrial-mediated apoptosis pathway. Lipids Health Dis. 2019 18 1 46 10.1186/s12944‑019‑0993‑8 30738430
    [Google Scholar]
  31. Playdon M.C. Ziegler R.G. Sampson J.N. Stolzenberg-Solomon R. Thompson H.J. Irwin M.L. Mayne S.T. Hoover R.N. Moore S.C. Nutritional metabolomics and breast cancer risk in a prospective study. Am. J. Clin. Nutr. 2017 106 2 637 649 10.3945/ajcn.116.150912 28659298
    [Google Scholar]
  32. Do M.T. Kim H.G. Choi J.H. Khanal T. Park B.H. Tran T.P. Jeong T.C. Jeong H.G. Antitumor efficacy of piperine in the treatment of human HER2-overexpressing breast cancer cells. Food Chem. 2013 141 3 2591 2599 10.1016/j.foodchem.2013.04.125 23870999
    [Google Scholar]
  33. Greenshields A.L. Doucette C.D. Sutton K.M. Madera L. Annan H. Yaffe P.B. Knickle A.F. Dong Z. Hoskin D.W. Piperine inhibits the growth and motility of triple-negative breast cancer cells. Cancer Lett. 2015 357 1 129 140 10.1016/j.canlet.2014.11.017 25444919
    [Google Scholar]
  34. Lai L. Fu Q. Liu Y. Jiang K. Guo Q. Chen Q. Yan B. Wang Q. Shen J. Piperine suppresses tumor growth and metastasis in vitro and in vivo in a 4T1 murine breast cancer model. Acta Pharmacol. Sin. 2012 33 4 523 530 10.1038/aps.2011.209 22388073
    [Google Scholar]
  35. Grinevicius V.M.A.S. Andrade K.S. Mota N.S.R.S. Bretanha L.C. Felipe K.B. Ferreira S.R.S. Pedrosa R.C. CDK2 and Bcl-xL inhibitory mechanisms by docking simulations and anti-tumor activity from piperine enriched supercritical extract. Food Chem. Toxicol. 2019 132 110644 10.1016/j.fct.2019.110644 31252023
    [Google Scholar]
  36. Quijia C.R. Chorilli M. Piperine for treating breast cancer: A review of molecular mechanisms, combination with anticancer drugs, and nanosystems. Phytother. Res. 2022 36 1 147 163 10.1002/ptr.7291 34559416
    [Google Scholar]
  37. Monteiro J. Alves M. Oliveira P. Silva B. Structure-bioactivity relationships of Methylxanthines: Trying to make sense of all the promises and the drawbacks. Molecules 2016 21 8 974 10.3390/molecules21080974 27472311
    [Google Scholar]
  38. Chang Y.L. Hsu Y.J. Chen Y. Wang Y.W. Huang S.M. Theophylline exhibits anti-cancer activity via suppressing SRSF3 in cervical and breast cancer cell lines. Oncotarget 2017 8 60 101461 101474 10.18632/oncotarget.21464 29254178
    [Google Scholar]
  39. Wikoff W.R. Anfora A.T. Liu J. Schultz P.G. Lesley S.A. Peters E.C. Siuzdak G. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc. Natl. Acad. Sci. USA 2009 106 10 3698 3703 10.1073/pnas.0812874106 19234110
    [Google Scholar]
  40. Menni C. Hernandez M.M. Vital M. Mohney R.P. Spector T.D. Valdes A.M. Circulating levels of the anti-oxidant indoleproprionic acid are associated with higher gut microbiome diversity. Gut Microbes 2019 10 6 688 695 10.1080/19490976.2019.1586038 31030641
    [Google Scholar]
  41. Bowden J. Davey Smith G. Burgess S. Mendelian randomization with invalid instruments: Effect estimation and bias detection through Egger regression. Int. J. Epidemiol. 2015 44 2 512 525 10.1093/ije/dyv080 26050253
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673406597251018190226
Loading
/content/journals/cmc/10.2174/0109298673406597251018190226
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article


  • Article Type:
    Research Article
Keywords: Metabolites ; amino acids ; genetic approaches ; fatty acids ; mendelian randomization ; breast cancer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test