Full text loading...
Observational studies have suggested associations between circulating metabolites and breast cancer (BC) risk, but the direction and causality of these relationships remain unclear due to confounding and reverse causation. Therefore, we aimed to evaluate the potential causal effects of 1,400 circulating metabolites on BC subtypes using Mendelian randomization (MR) based on GWAS data from European-ancestry populations.
Two-sample and reverse MR analyses were performed to explore potential causal links between metabolites and BC from the FinnGen and Breast Cancer Association Consortium (BCAC) cohorts. The inverse-variance weighted (IVW) approach served as the main analytical method to evaluate these associations. To further ensure the robustness and credibility of the MR findings, sensitivity analyses were conducted, incorporating leave-one-out procedures, the Cochran's Q test, and the MR-Egger intercept test.
Following correction using the False Discovery Rate (FDR) method at a significance level of 0.10, we identified 5alpha-pregnan-3beta,20alpha-diol monosulfate levels (p = 6.7714*10-5, PFDR = 0.0798) and Myristoleate (14:1n5) levels (p =0.0002, PFDR = 0.0798) were associated with an increased risk of ER+ BC. Conversely, the Caffeine to paraxanthine ratio (p =0.0001, PFDR = 0.0798) was associated with a reduced risk. In the reverse MR analysis, interactions were observed between Eicosanedioate (C20-DC) levels, Piperine levels, Caffeine to theobromine ratio, Indolepropionate levels, 1-oleoyl-GPC (18:1) levels, and Oleoylcarnitine levels with BC. Notably, the p-values of intercept terms in MR-Egger regression all exceeded 0.05, suggesting an absence of potential horizontal pleiotropy.
These findings suggested that hormone-related, lipid-related, and diet-derived metabolites might play subtype-specific roles in breast cancer development. The identified metabolites provided mechanistic insights and highlighted potential biological pathways that warrant further functional validation. They may also serve as preliminary biomarkers for future metabolomic and translational research.
Our MR study identified several metabolites that may be causally associated with BC risk. These findings offer potential candidates for further mechanistic investigation and highlight the importance of subtype-specific approaches in metabolomics research.
Article metrics loading...
Full text loading...
References
Data & Media loading...
Supplements