Skip to content
2000
image of Discovery of Novel SARS-CoV-2 3CLpro Inhibitors from Natural Products using FRET-based Assay

Abstract

Introduction

The coronavirus 3C-like protease (3CLpro) is essential for SARS-CoV-2 replication, making it a key target for antiviral drug development. Natural products represent a valuable source of bioactive compounds. This study aimed to identify novel 3CLpro inhibitors from natural compounds through a combination of virtual screening and experimental validation.

Methods

Recombinant 3CLpro was expressed, purified, and evaluated for enzymatic activity using Fluorescence Resonance Energy Transfer (FRET) assays under optimized conditions. Out of 583 virtually screened compounds, 30 were selected for experimental validation. Epitheaflagallin 3-O-gallate (ETFGg) was further analyzed for binding interactions using Molecular Dynamics (MD) simulations.

Results

ETFGg exhibited strong binding affinity (−66.90 kcal/mol) and inhibitory activity (IC = 8.73 ± 2.30 μM) against 3CLpro. MD simulations revealed stable interactions with key residues (HIE163, THR190, GLN192) in the 3CLpro active site.

Discussion

Our findings demonstrate that ETFGg is a potent and stable inhibitor of SARS-CoV-2 3CLpro, with a binding profile distinct from known inhibitors such as ebselen. The substrate inhibition kinetics observed suggest a novel allosteric mechanism, which may provide a new strategy for targeting 3CLpro. This study supports the value of natural product libraries combined with computational and FRET-based screening for discovering antiviral leads.

Conclusion

ETFGg was identified as a promising 3CLpro inhibitor with high binding stability, highlighting its potential as a lead compound for the development of anti-COVID-19 drugs.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673405748251114095746
2026-02-09
2026-02-21
Loading full text...

Full text loading...

/deliver/fulltext/cmc/10.2174/0109298673405748251114095746/BMS-CMC-2025-304.html?itemId=/content/journals/cmc/10.2174/0109298673405748251114095746&mimeType=html&fmt=ahah

References

  1. Piret J. Boivin G. Pandemics throughout history. Front. Microbiol. 2021 11 631736 10.3389/fmicb.2020.631736 33584597
    [Google Scholar]
  2. WHO coronavirus (COVID-19) dashboard. 2024 Available from: https://data.who.int/dashboards/covid19/more-resources
  3. Tregoning J.S. Flight K.E. Higham S.L. Wang Z. Pierce B.F. Progress of the COVID-19 vaccine effort: Viruses, vaccines and variants versus efficacy, effectiveness and escape. Nat. Rev. Immunol. 2021 21 10 626 636 10.1038/s41577‑021‑00592‑1 34373623
    [Google Scholar]
  4. Carabelli A.M. Peacock T.P. Thorne L.G. Harvey W.T. Hughes J. de Silva T.I. Peacock S.J. Barclay W.S. de Silva T.I. Towers G.J. Robertson D.L. SARS-CoV-2 variant biology: Immune escape, transmission and fitness. Nat. Rev. Microbiol. 2023 21 3 162 177 10.1038/s41579‑022‑00841‑7 36653446
    [Google Scholar]
  5. de Souza J.Â. de Souza Gomes I. de Souza Fernandes L. Andrade L.A.F. de Souza L.Â. de Almeida Paiva V. Araujo S.C. de Lima L.H.F. Dias R.S. de Melo-Minardi R.C. da Fonseca F.G. de Paula S.O. de Azevedo Silveira S. In vitro enzymatic and cell culture assays for SARS-CoV-2 main protease interaction with ambenonium. Sci. Rep. 2025 15 1 10606 10.1038/s41598‑025‑94283‑9 40148508
    [Google Scholar]
  6. Bulygin A.A. Kuznetsov N.A. Prospects for the structure‒function evolution of SARS-CoV-2 main protease inhibitors. J. Comput. Aided Mol. Des. 2025 39 1 78 10.1007/s10822‑025‑00654‑9 40952530
    [Google Scholar]
  7. Früh K. Borrow P. Gillespie G.M. McMichael A.J. Picker L.J. Targeting MHC-E as a new strategy for vaccines and immunotherapeutics. Nat. Rev. Immunol. 2025 10.1038/s41577‑025‑01218‑6 40903525
    [Google Scholar]
  8. Kang D. Craik C.S. Identifying protease-activated targets and exploring therapeutic applications. Expert Opin. Ther. Targets 2025 1 15 10.1080/14728222.2025.2563244 40964713
    [Google Scholar]
  9. Soni S. Mebratu Y.A. Polymorphism of bik as a host risk factor for severe influenza. DNA Cell Biol. 2025 10445498251379681 10.1177/10445498251379681 40971288
    [Google Scholar]
  10. Yu X.F. Wang S. Ye R. Wei W. Viral evasion of cGAS-STING pathway: Opportunities for intervention. Trends Pharmacol. Sci. 2025 46 10 989 1003 10.1016/j.tips.2025.08.009 40947349
    [Google Scholar]
  11. Mengist H.M. Fan X. Jin T. Designing of improved drugs for COVID-19: Crystal structure of SARS-CoV-2 main protease Mpro. Signal Transduct. Target. Ther. 2020 5 1 67 10.1038/s41392‑020‑0178‑y 32388537
    [Google Scholar]
  12. Rut W. Groborz K. Zhang L. Sun X. Zmudzinski M. Pawlik B. Wang X. Jochmans D. Neyts J. Młynarski W. Hilgenfeld R. Drag M. SARS-CoV-2 Mpro inhibitors and activity-based probes for patient-sample imaging. Nat. Chem. Biol. 2021 17 2 222 228 10.1038/s41589‑020‑00689‑z 33093684
    [Google Scholar]
  13. Lu J. Tang Y. Li H. Chen X. Qin P. Xu J. Li W. Chen L. Identifying exifone as a dual-target agent targeting both SARS-CoV-2 3CL protease and the ACE2/S-RBD interaction among clinical polyphenolic compounds. Int. J. Mol. Sci. 2025 26 5 2243 10.3390/ijms26052243 40076865
    [Google Scholar]
  14. Ringlander J. Martner A. Huiqi L. Gisslén M. Lindh M. Westin J. Nyberg F. Lagging M. Nilsson S. Hellstrand K. Influence of viral load on severity and mortality in COVID-19. Infect. Dis. 2025 57 9 811 818 10.1080/23744235.2025.2485274 40192738
    [Google Scholar]
  15. Liu H. Iketani S. Zask A. Khanizeman N. Bednarova E. Forouhar F. Fowler B. Hong S.J. Mohri H. Nair M.S. Huang Y. Tay N.E.S. Lee S. Karan C. Resnick S.J. Quinn C. Li W. Shion H. Xia X. Daniels J.D. Bartolo-Cruz M. Farina M. Rajbhandari P. Jurtschenko C. Lauber M.A. McDonald T. Stokes M.E. Hurst B.L. Rovis T. Chavez A. Ho D.D. Stockwell B.R. Development of optimized drug-like small molecule inhibitors of the SARS-CoV-2 3CL protease for treatment of COVID-19. Nat. Commun. 2022 13 1 1891 10.1038/s41467‑022‑29413‑2 35393402
    [Google Scholar]
  16. Makoana K.M. Naidoo C.M. Zubair M.S. Motshudi M.C. Mkolo N.M. Integration of metabolomics and chemometrics with in-silico and in-vitro approaches to unravel SARS-Cov-2 inhibitors from South African plants. PLoS One 2025 20 3 0320415 40138368
    [Google Scholar]
  17. Bhat Z.A. Chitara D. Iqbal J. Sanjeev B.S. Madhumalar A. Targeting allosteric pockets of SARS-CoV-2 main protease Mpro. J. Biomol. Struct. Dyn. 2022 40 14 6603 6618 33645457
    [Google Scholar]
  18. Wang M. Sun X. Peng S. Wang F. Zhao K. Wang D. Deciphering the cleavage sites of 3C-like protease in Gammacoronaviruses and Deltacoronaviruses. Biochim. Biophys. Acta. Proteins Proteomics 2025 1873 1 141057 10.1016/j.bbapap.2024.141057 39454742
    [Google Scholar]
  19. Mahase E. Covid-19: Pfizer’s paxlovid is 89% effective in patients at risk of serious illness, company reports. BMJ 2021 375 n2713 10.1136/bmj.n2713 34750163
    [Google Scholar]
  20. Najjar-Debbiny R. Gronich N. Weber G. Khoury J. Amar M. Stein N. Goldstein L.H. Saliba W. Effectiveness of paxlovid in reducing severe coronavirus disease 2019 and mortality in high-risk patients. Clin. Infect. Dis. 2023 76 3 e342 e349 10.1093/cid/ciac443 35653428
    [Google Scholar]
  21. Wen W. Chen C. Tang J. Wang C. Zhou M. Cheng Y. Zhou X. Wu Q. Zhang X. Feng Z. Wang M. Mao Q. Efficacy and safety of three new oral antiviral treatment (molnupiravir, fluvoxamine and Paxlovid) for COVID-19:a meta-analysis. Ann. Med. 2022 54 1 516 523 10.1080/07853890.2022.2034936 35118917
    [Google Scholar]
  22. Wang P. Hou T. Xu F. Luo F. Zhou H. Liu F. Xie X. Liu Y. Wang J. Guo Z. Liang X. Discovery of flavonoids as novel inhibitors of ATP citrate lyase: Structure-activity relationship and inhibition profiles. Int. J. Mol. Sci. 2022 23 18 10747 10.3390/ijms231810747 36142671
    [Google Scholar]
  23. Ameziane El Hassani I. Karrouchi K. Ansar M. Advancements in antiviral activity of aza-heterocyclic compounds: A review. Mol. Divers. 2025 10.1007/s11030‑025‑11355‑8 40970999
    [Google Scholar]
  24. Huang X. Li H. Lu H. Aisa H.A. Li J. Chlorinated guaiane-type sesquiterpene lactones of natural origin. J. Nat. Prod. 2025 88 9 2279 2300 10.1021/acs.jnatprod.5c00844 40940293
    [Google Scholar]
  25. Liskova A. Samec M. Koklesova L. Samuel S.M. Zhai K. Al-Ishaq R.K. Abotaleb M. Nosal V. Kajo K. Ashrafizadeh M. Zarrabi A. Brockmueller A. Shakibaei M. Sabaka P. Mozos I. Ullrich D. Prosecky R. La Rocca G. Caprnda M. Büsselberg D. Rodrigo L. Kruzliak P. Kubatka P. Flavonoids against the SARS CoV-2 induced inflammatory storm. Biomed. Pharmacother. 2021 138 111430 10.1016/j.biopha.2021.111430 33662680
    [Google Scholar]
  26. Mouffouk C. Mouffouk S. Mouffouk S. Hambaba L. Haba H. Flavonols as potential antiviral drugs targeting SARS-CoV-2 proteases (3CLpro and PLpro), spike protein, RNA-dependent RNA polymerase (RdRp) and angiotensin-converting enzyme II receptor (ACE2). Eur. J. Pharmacol. 2021 891 173759 10.1016/j.ejphar.2020.173759 33249077
    [Google Scholar]
  27. Yang D.D. Chutiwitoonchai N. Wang F. Tian P. Sureram S. Lei X. Mahidol C. Ruchirawat S. Kittakoop P. Effects of organic salts of virucidal and antiviral compounds from Nelumbo nucifera and Kaempferia parviflora against SARS-CoV-2. Sci. Rep. 2025 15 1 6380 10.1038/s41598‑025‑89736‑0 39984611
    [Google Scholar]
  28. Keretsu S. Bhujbal S.P. Cho S.J. Rational approach toward COVID-19 main protease inhibitors via molecular docking, molecular dynamics simulation and free energy calculation. Sci. Rep. 2020 10 1 17716 10.1038/s41598‑020‑74468‑0 33077821
    [Google Scholar]
  29. Bai B. Arutyunova E. Khan M.B. Lu J. Joyce M.A. Saffran H.A. Shields J.A. Kandadai A.S. Belovodskiy A. Hena M. Vuong W. Lamer T. Young H.S. Vederas J.C. Tyrrell D.L. Lemieux M.J. Nieman J.A. Peptidomimetic nitrile warheads as SARS-CoV-2 3CL protease inhibitors. RSC Med. Chem. 2021 12 10 1722 1730 10.1039/D1MD00247C 34778773
    [Google Scholar]
  30. Chen Z. Du R. Cooper L. Achi J.G. Dong M. Ran Y. Zhang J. Zhan P. Rong L. Cui Q. Sulforaphane is a reversible covalent inhibitor of 3-chymotrypsin-like protease of SARS-CoV-2. J. Med. Virol. 2023 95 3 28609 10.1002/jmv.28609 36840402
    [Google Scholar]
  31. Hirose Y. Shindo N. Mori M. Onitsuka S. Isogai H. Hamada R. Hiramoto T. Ochi J. Takahashi D. Ueda T. Caaveiro J.M.M. Yoshida Y. Ohdo S. Matsunaga N. Toba S. Sasaki M. Orba Y. Sawa H. Sato A. Kawanishi E. Ojida A. Discovery of chlorofluoroacetamide-based covalent inhibitors for severe acute respiratory syndrome coronavirus 2 3CL protease. J. Med. Chem. 2022 65 20 13852 13865 10.1021/acs.jmedchem.2c01081 36229406
    [Google Scholar]
  32. Hoffman R.L. Kania R.S. Brothers M.A. Davies J.F. Ferre R.A. Gajiwala K.S. He M. Hogan R.J. Kozminski K. Li L.Y. Lockner J.W. Lou J. Marra M.T. Mitchell L.J. Jr Murray B.W. Nieman J.A. Noell S. Planken S.P. Rowe T. Ryan K. Smith G.J. III Solowiej J.E. Steppan C.M. Taggart B. Discovery of ketone-based covalent inhibitors of coronavirus 3CL proteases for the potential therapeutic treatment of COVID-19. J. Med. Chem. 2020 63 21 12725 12747 10.1021/acs.jmedchem.0c01063 33054210
    [Google Scholar]
  33. Wang L. Yu Z. Wang S. Guo Z. Sun Q. Lai L. Discovery of novel SARS-CoV-2 3CL protease covalent inhibitors using deep learning-based screen. Eur. J. Med. Chem. 2022 244 114803 10.1016/j.ejmech.2022.114803 36209629
    [Google Scholar]
  34. Su H. Yao S. Zhao W. Li M. Liu J. Shang W. Xie H. Ke C. Hu H. Gao M. Yu K. Liu H. Shen J. Tang W. Zhang L. Xiao G. Ni L. Wang D. Zuo J. Jiang H. Bai F. Wu Y. Ye Y. Xu Y. Anti-SARS-CoV-2 activities in vitro of Shuanghuanglian preparations and bioactive ingredients. Acta Pharmacol. Sin. 2020 41 9 1167 1177 10.1038/s41401‑020‑0483‑6 32737471
    [Google Scholar]
  35. Su H. Yao S. Zhao W. Zhang Y. Liu J. Shao Q. Wang Q. Li M. Xie H. Shang W. Ke C. Feng L. Jiang X. Shen J. Xiao G. Jiang H. Zhang L. Ye Y. Xu Y. Identification of pyrogallol as a warhead in design of covalent inhibitors for the SARS-CoV-2 3CL protease. Nat. Commun. 2021 12 1 3623 10.1038/s41467‑021‑23751‑3 34131140
    [Google Scholar]
  36. Xiong Y. Zhu G.H. Zhang Y.N. Hu Q. Wang H.N. Yu H.N. Qin X.Y. Guan X.Q. Xiang Y.W. Tang H. Ge G.B. Flavonoids in Ampelopsis grossedentata as covalent inhibitors of SARS-CoV-2 3CLpro: Inhibition potentials, covalent binding sites and inhibitory mechanisms. Int. J. Biol. Macromol. 2021 187 976 987 10.1016/j.ijbiomac.2021.07.167 34333006
    [Google Scholar]
  37. Han S.H. Goins C.M. Arya T. Shin W.J. Maw J. Hooper A. Sonawane D.P. Porter M.R. Bannister B.E. Crouch R.D. Lindsey A.A. Lakatos G. Martinez S.R. Alvarado J. Akers W.S. Wang N.S. Jung J.U. Macdonald J.D. Stauffer S.R. Structure-based optimization of ML300-derived, noncovalent inhibitors targeting the severe acute respiratory syndrome coronavirus 3CL protease (SARS-CoV-2 3CL(pro)). J. Med. Chem. 2022 65 4 2880 2904 10.1021/acs.jmedchem.1c00598 34347470
    [Google Scholar]
  38. Nguyen H.L.T. Nguyen N.Q.T. Le T.T. Pham X.D.T. Pham H.L. Le H.N.T. Phan T.N. Dinh N.T. Improved expression and purification of highly-active 3 chymotrypsin-like protease from SARS-CoV-2. Protein Expr. Purif. 2024 215 106414 10.1016/j.pep.2023.106414 38072143
    [Google Scholar]
  39. Xiong Y. Zhu G.H. Wang H.N. Hu Q. Chen L.L. Guan X.Q. Li H.L. Chen H.Z. Tang H. Ge G.B. Discovery of naturally occurring inhibitors against SARS CoV-2 3CLpro from Ginkgo biloba leaves via large-scale screening. Fitoterapia 2021 152 104909 10.1016/j.fitote.2021.104909 33894315
    [Google Scholar]
  40. Grum-Tokars V. Ratia K. Begaye A. Baker S.C. Mesecar A.D. Evaluating the 3C-like protease activity of SARS-Coronavirus: Recommendations for standardized assays for drug discovery. Virus Res. 2008 133 1 63 73 10.1016/j.virusres.2007.02.015 17397958
    [Google Scholar]
  41. Dai W. Zhang B. Jiang X.M. Su H. Li J. Zhao Y. Xie X. Jin Z. Peng J. Liu F. Li C. Li Y. Bai F. Wang H. Cheng X. Cen X. Hu S. Yang X. Wang J. Liu X. Xiao G. Jiang H. Rao Z. Zhang L.K. Xu Y. Yang H. Liu H. Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science 2020 368 6497 1331 1335 10.1126/science.abb4489 32321856
    [Google Scholar]
  42. Liu S.Y. Wang W. Ke J.P. Zhang P. Chu G.X. Bao G.H. Discovery of Camellia sinensis catechins as SARS-CoV-2 3CL protease inhibitors through molecular docking, intra and extra cellular assays. Phytomedicine 2022 96 153853 10.1016/j.phymed.2021.153853 34799184
    [Google Scholar]
  43. Sahoo P. Lenka D.R. Batabyal M. Pain P.K. Kumar S. Manna D. Kumar A. Detailed insights into the inhibitory mechanism of new ebselen derivatives against main protease (M(pro)) of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). ACS Pharmacol. Transl. Sci. 2023 6 1 171 180 10.1021/acsptsci.2c00203 36650888
    [Google Scholar]
  44. Kappos L. Arnold D.L. Bar-Or A. Camm A.J. Derfuss T. Sprenger T. Davies M. Piotrowska A. Ni P. Harada T. Two-year results from a phase 2 extension study of oral amiselimod in relapsing multiple sclerosis. Mult. Scler. 2018 24 12 1605 1616 10.1177/1352458517728343 28911260
    [Google Scholar]
  45. Bargahi N. Ghasemian A. Hoseinpoor R. Mahmoodi S. A concise review of major challenges in the vaccination, diagnosis and treatment of novel coronavirus disease 2019. Arch. Razi Inst. 2024 79 6 1155 1164 40599434
    [Google Scholar]
  46. Subramaniam S. Saville J.W. Feng F. Freiburger L. Therapeutic antibodies for infectious diseases: Recent past, present, and future. Biochemistry 2025 64 16 3487 3494 10.1021/acs.biochem.5c00192 40773381
    [Google Scholar]
  47. Triggle C.R. MacDonald R. COVID-19 and a tale of three drugs: To repurpose, or not to repurpose-that was the question. Viruses 2025 17 7 881 10.3390/v17070881 40733499
    [Google Scholar]
  48. Wehbe R. Khoshman N. Ousseily Z. Al-Tameemi S.A. Majzoub R.E. Najar M. Merimi M. Fayyad-Kazan H. Badran B. Fayyad-Kazan M. Emerging SARS-CoV-2 variants: Genomic shifts, immune evasion, and therapeutic perspectives. Mol. Biol. Rep. 2025 52 1 886 10.1007/s11033‑025‑11009‑w 40928692
    [Google Scholar]
  49. Ren J. Zhang Z. Xia Y. Zhao D. Li D. Zhang S. Research progress on the structure and function, immune escape mechanism, antiviral drug development methods, and clinical use of SARS-CoV-2 M(pro). Molecules 2025 30 2 351 10.3390/molecules30020351 39860219
    [Google Scholar]
  50. Amrani B.L. Zawari N.S. Abd Rahman N.Z.A. Azman A.S. Nor Rashid N. Khairat J.E. Unlocking nature’s hidden treasures: Actinomycetota’s arsenal of potent antiviral compounds against human viral infections. Microb. Pathog. 2025 208 107953 10.1016/j.micpath.2025.107953 40769229
    [Google Scholar]
  51. Hou T. Shi L. Wang J. Wei L. Qu L. Zhang X. Liang X. Label-free cell phenotypic profiling and pathway deconvolution of neurotensin receptor-1. Pharmacol. Res. 2016 108 39 45 10.1016/j.phrs.2016.04.018 27117668
    [Google Scholar]
  52. Marques O. Figueirinha A. Pina M.E. Batista M.T. Uncaria tomentosa as a promising natural source of molecules with multiple activities: Review of its ethnomedicinal uses, phytochemistry and pharmacology. Int. J. Mol. Sci. 2025 26 14 6758 10.3390/ijms26146758 40725012
    [Google Scholar]
  53. Rizzuti B. Grande F. Conforti F. Jimenez-Alesanco A. Ceballos-Laita L. Ortega-Alarcon D. Vega S. Reyburn H.T. Abian O. Velazquez-Campoy A. Rutin is a low micromolar inhibitor of SARS-CoV-2 main protease 3CLpro: Implications for drug design of quercetin analogs. Biomedicines 2021 9 4 375 10.3390/biomedicines9040375 33918402
    [Google Scholar]
  54. Yu W.D. Jin Q.Y. Zeng M.S. Liu J.Y. Xu P.P. Geraniin as a potential inhibitor of SARS-CoV-2 3CL pro. Nat. Prod. Res. 2022 36 23 6060 6063 10.1080/14786419.2022.2043308 35200071
    [Google Scholar]
  55. Daoui O. Elkhattabi S. Chtita S. Rational identification of small molecules derived from 9,10-dihydrophenanthrene as potential inhibitors of 3CLpro enzyme for COVID-19 therapy: A computer-aided drug design approach. Struct. Chem. 2022 33 5 1667 1690 10.1007/s11224‑022‑02004‑z 35818588
    [Google Scholar]
  56. Ghosh R. Chakraborty A. Biswas A. Chowdhuri S. Evaluation of green tea polyphenols as novel corona virus (SARS CoV-2) main protease (Mpro) inhibitors – an in silico docking and molecular dynamics simulation study. J. Biomol. Struct. Dyn. 2021 39 12 4362 4374 10.1080/07391102.2020.1779818 32568613
    [Google Scholar]
  57. Goyal B. Goyal D. Targeting the dimerization of the main protease of coronaviruses: A potential broad-spectrum therapeutic strategy. ACS Comb. Sci. 2020 22 6 297 305 10.1021/acscombsci.0c00058 32402186
    [Google Scholar]
  58. Kidera A. Moritsugu K. Ekimoto T. Ikeguchi M. Allosteric regulation of 3CL protease of SARS-CoV-2 and SARS-CoV observed in the crystal structure ensemble. J. Mol. Biol. 2021 433 24 167324 10.1016/j.jmb.2021.167324 34717972
    [Google Scholar]
  59. Alzyoud L. Ghattas M.A. Atatreh N. Allosteric binding sites of the SARS-CoV-2 main protease: Potential targets for broad-spectrum anti-coronavirus agents. Drug Des. Devel. Ther. 2022 16 2463 2478 10.2147/DDDT.S370574 35941927
    [Google Scholar]
  60. Tao X. Zhang L. Du L. Liao R. Cai H. Lu K. Zhao Z. Xie Y. Wang P.H. Pan J.A. Zhang Y. Li G. Dai J. Mao Z.W. Xia W. Allosteric inhibition of SARS-CoV-2 3CL protease by colloidal bismuth subcitrate. Chem. Sci. 2021 12 42 14098 14102 10.1039/D1SC03526F 34760193
    [Google Scholar]
  61. Mark P. Nilsson L. Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J. Phys. Chem. A 2001 105 43 9954 9960 10.1021/jp003020w
    [Google Scholar]
  62. Lee S.H. Rasaiah J.C. Molecular dynamics simulation of ion mobility. 2. alkali metal and halide ions using the SPC/E model for water at 25°C. J. Phys. Chem. 1996 100 4 1420 1425 10.1021/jp953050c
    [Google Scholar]
  63. Liu Y. Kati W. Chen C.M. Tripathi R. Molla A. Kohlbrenner W. Use of a fluorescence plate reader for measuring kinetic parameters with inner filter effect correction. Anal. Biochem. 1999 267 2 331 335 10.1006/abio.1998.3014 10036138
    [Google Scholar]
  64. Palmier M.O. Van Doren S.R. Rapid determination of enzyme kinetics from fluorescence: Overcoming the inner filter effect. Anal. Biochem. 2007 371 1 43 51 10.1016/j.ab.2007.07.008 17706587
    [Google Scholar]
  65. Prinz H. Hill coefficients, dose–response curves and allosteric mechanisms. J. Chem. Biol. 2010 3 1 37 44 10.1007/s12154‑009‑0029‑3 19779939
    [Google Scholar]
  66. Kokkonen P. Beier A. Mazurenko S. Damborsky J. Bednar D. Prokop Z. Substrate inhibition by the blockage of product release and its control by tunnel engineering. RSC Chem. Biol. 2021 2 2 645 655 10.1039/D0CB00171F 34458806
    [Google Scholar]
  67. Reed M.C. Lieb A. Nijhout H.F. The biological significance of substrate inhibition: A mechanism with diverse functions. BioEssays 2010 32 5 422 429 10.1002/bies.200900167 20414900
    [Google Scholar]
  68. Uba G. Yakasai H.M. Abubakar A. Substrate inhibition kinetics models for fitting the growth rate of phenol by an immobilized pseudomonas putida. J. Environ. Microb. Toxicol. 2022 10 2 27 33 10.54987/jemat.v10i2.770
    [Google Scholar]
  69. Kolhatkar V. Polli J.E. Reliability of inhibition models to correctly identify type of inhibition. Pharm. Res. 2010 27 11 2433 2445 10.1007/s11095‑010‑0236‑1 20711748
    [Google Scholar]
  70. Jarantow S.W. Pisors E.D. Chiu M.L. Introduction to the use of linear and nonlinear regression analysis in quantitative biological assays. Curr. Protoc. 2023 3 6 801 10.1002/cpz1.801 37358238
    [Google Scholar]
  71. Du A. Zheng R. Disoma C. Li S. Chen Z. Li S. Liu P. Zhou Y. Shen Y. Liu S. Zhang Y. Dong Z. Yang Q. Alsaadawe M. Razzaq A. Peng Y. Chen X. Hu L. Peng J. Zhang Q. Jiang T. Mo L. Li S. Xia Z. Epigallocatechin-3-gallate, an active ingredient of Traditional Chinese Medicines, inhibits the 3CLpro activity of SARS-CoV-2. Int. J. Biol. Macromol. 2021 176 1 12 10.1016/j.ijbiomac.2021.02.012 33548314
    [Google Scholar]
  72. Itoh N. Kurokawa J. Isogai Y. Ogasawara M. Matsunaga T. Okubo T. Katsube Y. Functional characterization of epitheaflagallin 3-O-gallate generated in laccase-treated green tea extracts in the presence of gallic acid. J. Agric. Food Chem. 2017 65 48 10473 10481 10.1021/acs.jafc.7b04208 29131612
    [Google Scholar]
  73. Nishimura H. Okamoto M. Dapat I. Katsumi M. Oshitani H. Inactivation of SARS-CoV-2 by catechins from green tea. Jpn. J. Infect. Dis. 2021 74 5 421 423 10.7883/yoken.JJID.2020.902 33518628
    [Google Scholar]
  74. Zhang D. Hamdoun S. Chen R. Yang L. Ip C.K. Qu Y. Li R. Jiang H. Yang Z. Chung S.K. Liu L. Wong V.K.W. Identification of natural compounds as SARS-CoV-2 entry inhibitors by molecular docking-based virtual screening with bio-layer interferometry. Pharmacol. Res. 2021 172 105820 10.1016/j.phrs.2021.105820 34403732
    [Google Scholar]
  75. Li C.W. Chao T.L. Lai C.L. Lin C.C. Pan M.Y.C. Cheng C.L. Kuo C.J. Wang L.H.C. Chang S.Y. Liang P.H. Systematic studies on the anti-SARS-CoV-2 mechanisms of tea polyphenol-related natural products. ACS Omega 2024 9 22 23984 23997 10.1021/acsomega.4c02392 38854515
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673405748251114095746
Loading
/content/journals/cmc/10.2174/0109298673405748251114095746
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test