Skip to content
2000
image of Neutrophil-Related Gene Signatures for Ischemic Stroke Diagnosis

Abstract

Introduction

Ischemic stroke (IS) is a major cause of death and disability worldwide. The transcriptional mechanism of neutrophil extracellular trap-related genes (NRGs) and their diagnostic potential remain unknown. This study aims to explore the mechanism of NRGs in IS through machine learning and single-cell RNA sequencing (scRNA-seq).

Methods

We conducted differential analysis and functional enrichment analysis on the GEO dataset. Machine learning algorithms were used to identify NRGs related to IS. ScRNA-seq analysis was employed to verify the expression of NRGs in different cell types, and cellchat was used to explore the interactions between cell types in the IS. The expression of was also verified in the mouse model of middle cerebral artery occlusion (MCAO).

Results

We identified 26 differentially expressed NRGs (DE-NRGs). The diagnostic models constructed from five DE-NRGs (, , , , ) demonstrated high predictive ability. Single-cell analysis revealed that NRGs were highly expressed in the IS group. The experiment verified the significant upregulation of .

Discussion

This study employed machine learning and scRNA-seq to identify the DE-NRGs-related diagnostic model, providing a certain theoretical basis for IS risk stratification. More experiments are needed to verify the role of DE-NRGs in IS in the future.

Conclusion

This study identified DE-NRGs with diagnostic capabilities in IS and verified their high expression through scRNA and experimental methods. DE-NRGs may be potential therapeutic targets for IS.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673405347250925073240
2025-10-20
2025-12-18
Loading full text...

Full text loading...

References

  1. Saini V. Guada L. Yavagal D.R. Global epidemiology of stroke and access to acute ischemic stroke interventions. Neurology 2021 97 20_Supplement_2 S6 S16 10.1212/WNL.0000000000012781 34785599
    [Google Scholar]
  2. Feigin V.L. Nichols E. Alam T. Bannick M.S. Beghi E. Blake N. Culpepper W.J. Dorsey E.R. Elbaz A. Ellenbogen R.G. Fisher J.L. Fitzmaurice C. Giussani G. Glennie L. James S.L. Johnson C.O. Kassebaum N.J. Logroscino G. Marin B. Mountjoy-Venning W.C. Nguyen M. Ofori-Asenso R. Patel A.P. Piccininni M. Roth G.A. Steiner T.J. Stovner L.J. Szoeke C.E.I. Theadom A. Vollset S.E. Wallin M.T. Wright C. Zunt J.R. Abbasi N. Abd-Allah F. Abdelalim A. Abdollahpour I. Aboyans V. Abraha H.N. Acharya D. Adamu A.A. Adebayo O.M. Adeoye A.M. Adsuar J.C. Afarideh M. Agrawal S. Ahmadi A. Ahmed M.B. Aichour A.N. Aichour I. Aichour M.T.E. Akinyemi R.O. Akseer N. Al-Eyadhy A. Al-Shahi Salman R. Alahdab F. Alene K.A. Aljunid S.M. Altirkawi K. Alvis-Guzman N. Anber N.H. Antonio C.A.T. Arabloo J. Aremu O. Ärnlöv J. Asayesh H. Asghar R.J. Atalay H.T. Awasthi A. Ayala Quintanilla B.P. Ayuk T.B. Badawi A. Banach M. Banoub J.A.M. Barboza M.A. Barker-Collo S.L. Bärnighausen T.W. Baune B.T. Bedi N. Behzadifar M. Behzadifar M. Béjot Y. Bekele B.B. Belachew A.B. Bennett D.A. Bensenor I.M. Berhane A. Beuran M. Bhattacharyya K. Bhutta Z.A. Biadgo B. Bijani A. Bililign N. Bin Sayeed M.S. Blazes C.K. Brayne C. Butt Z.A. Campos-Nonato I.R. Cantu-Brito C. Car M. Cárdenas R. Carrero J.J. Carvalho F. Castañeda-Orjuela C.A. Castro F. Catalá-López F. Cerin E. Chaiah Y. Chang J-C. Chatziralli I. Chiang P.P-C. Christensen H. Christopher D.J. Cooper C. Cortesi P.A. Costa V.M. Criqui M.H. Crowe C.S. Damasceno A.A.M. Daryani A. De la Cruz-Góngora V. De la Hoz F.P. De Leo D. Demoz G.T. Deribe K. Dharmaratne S.D. Diaz D. Dinberu M.T. Djalalinia S. Doku D.T. Dubey M. Dubljanin E. Duken E.E. Edvardsson D. El-Khatib Z. Endres M. Endries A.Y. Eskandarieh S. Esteghamati A. Esteghamati S. Farhadi F. Faro A. Farzadfar F. Farzaei M.H. Fatima B. Fereshtehnejad S-M. Fernandes E. Feyissa G.T. Filip I. Fischer F. Fukumoto T. Ganji M. Gankpe F.G. Garcia-Gordillo M.A. Gebre A.K. Gebremichael T.G. Gelaw B.K. Geleijnse J.M. Geremew D. Gezae K.E. Ghasemi-Kasman M. Gidey M.Y. Gill P.S. Gill T.K. Girma E.T. Gnedovskaya E.V. Goulart A.C. Grada A. Grosso G. Guo Y. Gupta R. Gupta R. Haagsma J.A. Hagos T.B. Haj-Mirzaian A. Haj-Mirzaian A. Hamadeh R.R. Hamidi S. Hankey G.J. Hao Y. Haro J.M. Hassankhani H. Hassen H.Y. Havmoeller R. Hay S.I. Hegazy M.I. Heidari B. Henok A. Heydarpour F. Hoang C.L. Hole M.K. Homaie Rad E. Hosseini S.M. Hu G. Igumbor E.U. Ilesanmi O.S. Irvani S.S.N. Islam S.M.S. Jakovljevic M. Javanbakht M. Jha R.P. Jobanputra Y.B. Jonas J.B. Jozwiak J.J. Jürisson M. Kahsay A. Kalani R. Kalkonde Y. Kamil T.A. Kanchan T. Karami M. Karch A. Karimi N. Kasaeian A. Kassa T.D. Kassa Z.Y. Kaul A. Kefale A.T. Keiyoro P.N. Khader Y.S. Khafaie M.A. Khalil I.A. Khan E.A. Khang Y-H. Khazaie H. Kiadaliri A.A. Kiirithio D.N. Kim A.S. Kim D. Kim Y-E. Kim Y.J. Kisa A. Kokubo Y. Koyanagi A. Krishnamurthi R.V. Kuate Defo B. Kucuk Bicer B. Kumar M. Lacey B. Lafranconi A. Lansingh V.C. Latifi A. Leshargie C.T. Li S. Liao Y. Linn S. Lo W.D. Lopez J.C.F. Lorkowski S. Lotufo P.A. Lucas R.M. Lunevicius R. Mackay M.T. Mahotra N.B. Majdan M. Majdzadeh R. Majeed A. Malekzadeh R. Malta D.C. Manafi N. Mansournia M.A. Mantovani L.G. März W. Mashamba-Thompson T.P. Massenburg B.B. Mate K.K.V. McAlinden C. McGrath J.J. Mehta V. Meier T. Meles H.G. Melese A. Memiah P.T.N. Memish Z.A. Mendoza W. Mengistu D.T. Mengistu G. Meretoja A. Meretoja T.J. Mestrovic T. Miazgowski B. Miazgowski T. Miller T.R. Mini G.K. Mirrakhimov E.M. Moazen B. Mohajer B. Mohammad Gholi Mezerji N. Mohammadi M. Mohammadi-Khanaposhtani M. Mohammadibakhsh R. Mohammadnia-Afrouzi M. Mohammed S. Mohebi F. Mokdad A.H. Monasta L. Mondello S. Moodley Y. Moosazadeh M. Moradi G. Moradi-Lakeh M. Moradinazar M. Moraga P. Moreno Velásquez I. Morrison S.D. Mousavi S.M. Muhammed O.S. Muruet W. Musa K.I. Mustafa G. Naderi M. Nagel G. Naheed A. Naik G. Najafi F. Nangia V. Negoi I. Negoi R.I. Newton C.R.J. Ngunjiri J.W. Nguyen C.T. Nguyen L.H. Ningrum D.N.A. Nirayo Y.L. Nixon M.R. Norrving B. Noubiap J.J. Nourollahpour Shiadeh M. Nyasulu P.S. Ogah O.S. Oh I-H. Olagunju A.T. Olagunju T.O. Olivares P.R. Onwujekwe O.E. Oren E. Owolabi M.O. Pa M. Pakpour A.H. Pan W-H. Panda-Jonas S. Pandian J.D. Patel S.K. Pereira D.M. Petzold M. Pillay J.D. Piradov M.A. Polanczyk G.V. Polinder S. Postma M.J. Poulton R. Poustchi H. Prakash S. Prakash V. Qorbani M. Radfar A. Rafay A. Rafiei A. Rahim F. Rahimi-Movaghar V. Rahman M. Rahman M.H.U. Rahman M.A. Rajati F. Ram U. Ranta A. Rawaf D.L. Rawaf S. Reinig N. Reis C. Renzaho A.M.N. Resnikoff S. Rezaeian S. Rezai M.S. Rios González C.M. Roberts N.L.S. Roever L. Ronfani L. Roro E.M. Roshandel G. Rostami A. Sabbagh P. Sacco R.L. Sachdev P.S. Saddik B. Safari H. Safari-Faramani R. Safi S. Safiri S. Sagar R. Sahathevan R. Sahebkar A. Sahraian M.A. Salamati P. Salehi Zahabi S. Salimi Y. Samy A.M. Sanabria J. Santos I.S. Santric Milicevic M.M. Sarrafzadegan N. Sartorius B. Sarvi S. Sathian B. Satpathy M. Sawant A.R. Sawhney M. Schneider I.J.C. Schöttker B. Schwebel D.C. Seedat S. Sepanlou S.G. Shabaninejad H. Shafieesabet A. Shaikh M.A. Shakir R.A. Shams-Beyranvand M. Shamsizadeh M. Sharif M. Sharif-Alhoseini M. She J. Sheikh A. Sheth K.N. Shigematsu M. Shiri R. Shirkoohi R. Shiue I. Siabani S. Siddiqi T.J. Sigfusdottir I.D. Sigurvinsdottir R. Silberberg D.H. Silva J.P. Silveira D.G.A. Singh J.A. Sinha D.N. Skiadaresi E. Smith M. Sobaih B.H. Sobhani S. Soofi M. Soyiri I.N. Sposato L.A. Stein D.J. Stein M.B. Stokes M.A. Sufiyan M.B. Sykes B.L. Sylaja P.N. Tabarés-Seisdedos R. Te Ao B.J. Tehrani-Banihashemi A. Temsah M-H. Temsah O. Thakur J.S. Thrift A.G. Topor-Madry R. Tortajada-Girbés M. Tovani-Palone M.R. Tran B.X. Tran K.B. Truelsen T.C. Tsadik A.G. Tudor Car L. Ukwaja K.N. Ullah I. Usman M.S. Uthman O.A. Valdez P.R. Vasankari T.J. Vasanthan R. Veisani Y. Venketasubramanian N. Violante F.S. Vlassov V. Vosoughi K. Vu G.T. Vujcic I.S. Wagnew F.S. Waheed Y. Wang Y-P. Weiderpass E. Weiss J. Whiteford H.A. Wijeratne T. Winkler A.S. Wiysonge C.S. Wolfe C.D.A. Xu G. Yadollahpour A. Yamada T. Yano Y. Yaseri M. Yatsuya H. Yimer E.M. Yip P. Yisma E. Yonemoto N. Yousefifard M. Yu C. Zaidi Z. Zaman S.B. Zamani M. Zandian H. Zare Z. Zhang Y. Zodpey S. Naghavi M. Murray C.J.L. Vos T. Global, regional, and national burden of neurological disorders, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019 18 5 459 480 10.1016/S1474‑4422(18)30499‑X 30879893
    [Google Scholar]
  3. Fan J. Li X. Yu X. Liu Z. Jiang Y. Fang Y. Zong M. Suo C. Man Q. Xiong L. Global burden, risk factor analysis, and prediction study of ischemic stroke, 1990–2030. Neurology 2023 101 2 e137 e150 10.1212/WNL.0000000000207387 37197995
    [Google Scholar]
  4. Peiseler M. Kubes P. More friend than foe: The emerging role of neutrophils in tissue repair. J. Clin. Invest. 2019 129 7 2629 2639 10.1172/JCI124616 31205028
    [Google Scholar]
  5. Yue J. Mo L. Zeng G. Ma P. Zhang X. Peng Y. Zhang X. Zhou Y. Jiang Y. Huang N. Cheng Y. Inhibition of neutrophil extracellular traps alleviates blood–brain barrier disruption and cognitive dysfunction via Wnt3/β-catenin/TCF4 signaling in sepsis-associated encephalopathy. J. Neuroinflammation 2025 22 1 87 10.1186/s12974‑025‑03395‑6 40102948
    [Google Scholar]
  6. Li H. Shan W. Zhao X. Sun W. Neutrophils: Linking inflammation to thrombosis and unlocking new treatment horizons. Int. J. Mol. Sci. 2025 26 5 1965 10.3390/ijms26051965 40076593
    [Google Scholar]
  7. Huang Y. Niu Y. Wang X. Li X. He Y. Liu X. Identification of novel biomarkers related to neutrophilic inflammation in COPD. Front. Immunol. 2024 15 1410158 10.3389/fimmu.2024.1410158 38873611
    [Google Scholar]
  8. Gour N. Yong H.M. Magesh A. Atakkatan A. Andrade F. Lajoie S. Dong X. A GPCR-neuropeptide axis dampens hyperactive neutrophils by promoting an alternative-like polarization during bacterial infection. Immunity 2024 57 2 333 348.e6 10.1016/j.immuni.2024.01.003 38295799
    [Google Scholar]
  9. Yang M. Li Y. Shi K. Wang X. Liu X. Huang X. Shi F.D. Ma S. Li M. Wang Y. Single-Cell transcriptomes of immune cells from multiple compartments redefine the ontology of myeloid subtypes post-stroke. Adv. Sci. (Weinh.) 2025 12 13 2408722 10.1002/advs.202408722 39930981
    [Google Scholar]
  10. Xie M. Hao Y. Feng L. Wang T. Yao M. Li H. Ma D. Feng J. Neutrophil heterogeneity and its roles in the inflammatory network after ischemic stroke. Curr. Neuropharmacol. 2023 21 3 621 650 10.2174/1570159X20666220706115957 35794770
    [Google Scholar]
  11. Bormann D. Knoflach M. Poreba E. Riedl C.J. Testa G. Orset C. Levilly A. Cottereau A. Jauk P. Hametner S. Stranzl N. Golabi B. Copic D. Klas K. Direder M. Kühtreiber H. Salek M. zur Nedden S. Baier-Bitterlich G. Kiechl S. Haider C. Endmayr V. Höftberger R. Ankersmit H.J. Mildner M. Single-nucleus RNA sequencing reveals glial cell type-specific responses to ischemic stroke in male rodents. Nat. Commun. 2024 15 1 6232 10.1038/s41467‑024‑50465‑z 39043661
    [Google Scholar]
  12. Wang H. Len L. Hu L. Hu Y. Combining machine learning and single-cell sequencing to identify key immune genes in sepsis. Sci. Rep. 2025 15 1 1557 10.1038/s41598‑025‑85799‑1 39789158
    [Google Scholar]
  13. Shi S. Huang C. Tang X. Liu H. Feng W. Chen C. Identification and verification of diagnostic biomarkers for deep infiltrating endometriosis based on machine learning algorithms. J. Biol. Eng. 2024 18 1 70 10.1186/s13036‑024‑00466‑9 39587559
    [Google Scholar]
  14. Liu S. Wang Z. Zhu R. Wang F. Cheng Y. Liu Y. Three differential expression analysis methods for RNA sequencing: Limma, EdgeR, DESeq2. J. Vis. Exp. 2021 175 e62528 10.3791/62528 34605806
    [Google Scholar]
  15. Wu J. Zhang F. Zheng X. Zhang J. Cao P. Sun Z. Wang W. Identification of renal ischemia reperfusion injury subtypes and predictive strategies for delayed graft function and graft survival based on neutrophil extracellular trap-related genes. Front. Immunol. 2022 13 1047367 10.3389/fimmu.2022.1047367 36532016
    [Google Scholar]
  16. Yu G. Wang L.G. Han Y. He Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS 2012 16 5 284 287 10.1089/omi.2011.0118 22455463
    [Google Scholar]
  17. Hänzelmann S. Castelo R. Guinney J. GSVA: Gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics 2013 14 1 7 10.1186/1471‑2105‑14‑7 23323831
    [Google Scholar]
  18. Alderden J. Pepper G.A. Wilson A. Whitney J.D. Richardson S. Butcher R. Jo Y. Cummins M.R. Predicting pressure injury in critical care patients: A machine-learning model. Am. J. Crit. Care 2018 27 6 461 468 10.4037/ajcc2018525 30385537
    [Google Scholar]
  19. Sanz H. Valim C. Vegas E. Oller J.M. Reverter F. SVM-RFE: Selection and visualization of the most relevant features through non-linear kernels. BMC Bioinformatics 2018 19 1 432 10.1186/s12859‑018‑2451‑4 30453885
    [Google Scholar]
  20. Wang Q. Qiao W. Zhang H. Liu B. Li J. Zang C. Mei T. Zheng J. Zhang Y. Nomogram established on account of Lasso-Cox regression for predicting recurrence in patients with early-stage hepatocellular carcinoma. Front. Immunol. 2022 13 1019638 10.3389/fimmu.2022.1019638 36505501
    [Google Scholar]
  21. Wang Q. Gao Q.C. Wang Q.C. Wu L. Yu Q. He P.F. A compendium of mitochondrial molecular characteristics provides novel perspectives on the treatment of rheumatoid arthritis patients. J. Transl. Med. 2023 21 1 561 10.1186/s12967‑023‑04426‑7 37608254
    [Google Scholar]
  22. Chen N. Fan B. He Z. Yu X. Wang J. Identification of HBEGF+ fibroblasts in the remission of rheumatoid arthritis by integrating single-cell RNA sequencing datasets and bulk RNA sequencing datasets. Arthritis Res. Ther. 2022 24 1 215 10.1186/s13075‑022‑02902‑x 36068607
    [Google Scholar]
  23. Franzén O. Gan L.M. Björkegren J.L.M. PanglaoDB: A web server for exploration of mouse and human single-cell RNA sequencing data. Database 2019 2019 baz046 10.1093/database/baz046 30951143
    [Google Scholar]
  24. Aran D. Looney A.P. Liu L. Wu E. Fong V. Hsu A. Chak S. Naikawadi R.P. Wolters P.J. Abate A.R. Butte A.J. Bhattacharya M. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 2019 20 2 163 172 10.1038/s41590‑018‑0276‑y 30643263
    [Google Scholar]
  25. Franke M. Bieber M. Kraft P. Weber A.N.R. Stoll G. Schuhmann M.K. The NLRP3 inflammasome drives inflammation in ischemia/reperfusion injury after transient middle cerebral artery occlusion in mice. Brain Behav. Immun. 2021 92 221 231 10.1016/j.bbi.2020.12.009 33307174
    [Google Scholar]
  26. Campbell B.C.V. Khatri P. Stroke. Lancet 2020 396 10244 129 142 10.1016/S0140‑6736(20)31179‑X 32653056
    [Google Scholar]
  27. Hasan T.F. Rabinstein A.A. Middlebrooks E.H. Haranhalli N. Silliman S.L. Meschia J.F. Tawk R.G. Diagnosis and management of acute ischemic stroke. Mayo Clin. Proc. 2018 93 4 523 538 10.1016/j.mayocp.2018.02.013 29622098
    [Google Scholar]
  28. Maniaci A. Giurdanella G. Chiesa Estomba C. Mauramati S. Bertolin A. Lionello M. Mayo-Yanez M. Rizzo P.B. Lechien J.R. Lentini M. Personalized treatment strategies via integration of gene expression biomarkers in molecular profiling of laryngeal cancer. J. Pers. Med. 2024 14 10 1048 10.3390/jpm14101048 39452555
    [Google Scholar]
  29. Iadecola C. Buckwalter M.S. Anrather J. Immune responses to stroke: Mechanisms, modulation, and therapeutic potential. J. Clin. Invest. 2020 130 6 2777 2788 10.1172/JCI135530 32391806
    [Google Scholar]
  30. Gong Z. Guo J. Liu B. Guo Y. Cheng C. Jiang Y. Liang N. Hu M. Song T. Yang L. Li H. Zhang H. Zong X. Che Q. Shi N. Mechanisms of immune response and cell death in ischemic stroke and their regulation by natural compounds. Front. Immunol. 2024 14 1287857 10.3389/fimmu.2023.1287857 38274789
    [Google Scholar]
  31. Malone K. Amu S. Moore A.C. Waeber C. The immune system and stroke: From current targets to future therapy. Immunol. Cell Biol. 2019 97 1 5 16 10.1111/imcb.12191 30022515
    [Google Scholar]
  32. Cai J. Ye Z. Hu Y. Yang J. Wu L. Yuan F. Zhang L. Chen Q. Zhang S. Identification of immunogenic cell death-related gene classification patterns and immune infiltration characterization in ischemic stroke based on machine learning. Front. Cell. Neurosci. 2022 16 1094500 10.3389/fncel.2022.1094500 36601430
    [Google Scholar]
  33. Peng Y. Ouyang C. Wu Y. Ma R. Li H. Li Y. Jing J. Sun L. A novel PCDscore based on programmed cell death-related genes can effectively predict prognosis and therapy responses of colon adenocarcinoma. Comput. Biol. Med. 2024 170 107933 10.1016/j.compbiomed.2024.107933 38217978
    [Google Scholar]
  34. Fang H. Bo Y. Hao Z. Mang G. Jin J. Wang H. A promising frontier: Targeting NETs for stroke treatment breakthroughs. Cell Commun. Signal. 2024 22 1 238 10.1186/s12964‑024‑01563‑4 38654328
    [Google Scholar]
  35. Mu Q. Yao K. Syeda M.Z. Wan J. Cheng Q. You Z. Sun R. Zhang Y. Zhang H. Lu Y. Luo Z. Li Y. Liu F. Liu H. Zou X. Zhu Y. Peng K. Huang C. Chen X. Tang L. Neutrophil targeting platform reduces neutrophil extracellular traps for improved traumatic brain injury and stroke theranostics. Adv. Sci. (Weinh.) 2024 11 21 2308719 10.1002/advs.202308719 38520727
    [Google Scholar]
  36. Baumann T. de Buhr N. Blume N. Gabriel M.M. Ernst J. Fingerhut L. Imker R. Abu-Fares O. Kühnel M. Jonigk D.D. Götz F. Falk C. Weissenborn K. Grosse G.M. Schuppner R. Assessment of associations between neutrophil extracellular trap biomarkers in blood and thrombi in acute ischemic stroke patients. J. Thromb. Thrombolysis 2024 57 6 936 946 10.1007/s11239‑024‑03004‑y 38853210
    [Google Scholar]
  37. Li Z. Sun S. Xiao Q. Tan S. Jin H. Hu B. Neuron derived cold-inducible RNA-binding protein promotes nets formation to exacerbate brain endothelial barrier disruption after ischemic stroke. Aging Dis. 2024 16 1 520 539 10.14336/AD.2024.0204‑1 38377019
    [Google Scholar]
  38. Wu Z.R. Zhou T.Q. Ai S.C. Neutrophil extracellular traps correlate with severity and prognosis in patients with ischemic stroke: A systematic review and meta-analysis. Acta Neurol. Belg. 2024 124 2 513 522 10.1007/s13760‑023‑02409‑5 37950825
    [Google Scholar]
  39. Lee E.C. Ha T.W. Lee D.H. Hong D.Y. Park S.W. Lee J.Y. Lee M.R. Oh J.S. Utility of exosomes in ischemic and hemorrhagic stroke diagnosis and treatment. Int. J. Mol. Sci. 2022 23 15 8367 10.3390/ijms23158367 35955498
    [Google Scholar]
  40. Vogel S. Bodenstein R. Chen Q. Feil S. Feil R. Rheinlaender J. Schäffer T.E. Bohn E. Frick J.S. Borst O. Münzer P. Walker B. Markel J. Csanyi G. Pagano P.J. Loughran P. Jessup M.E. Watkins S.C. Bullock G.C. Sperry J.L. Zuckerbraun B.S. Billiar T.R. Lotze M.T. Gawaz M. Neal M.D. Platelet-derived HMGB1 is a critical mediator of thrombosis. J. Clin. Invest. 2015 125 12 4638 4654 10.1172/JCI81660 26551681
    [Google Scholar]
  41. Liesz A. Dalpke A. Mracsko E. Roth S. Zhou W. Yang H. Na S-Y. Akhisaroglu M. Fleming T. Eigenbrod T. Nawroth P.P. Tracey K.J. Veltkamp R. Veltkamp R. DAMP signaling is a key pathway inducing immune modulation after brain injury. J. Neurosci. 2015 35 2 583 598 10.1523/JNEUROSCI.2439‑14.2015 25589753
    [Google Scholar]
  42. Schuhmann M.K. Kollikowski A.M. März A.G. Bieber M. Pham M. Stoll G. Danger-associated molecular patterns are locally released during occlusion in hyper-acute stroke. Brain Behav. Immun. Health 2021 15 100270 10.1016/j.bbih.2021.100270 34589775
    [Google Scholar]
  43. Secondo A. Petrozziello T. Tedeschi V. Boscia F. Vinciguerra A. Ciccone R. Pannaccione A. Molinaro P. Pignataro G. Annunziato L. ORAI1/STIM1 interaction intervenes in stroke and in neuroprotection induced by ischemic preconditioning through store-operated calcium entry. Stroke 2019 50 5 1240 1249 10.1161/STROKEAHA.118.024115 31009360
    [Google Scholar]
  44. Keifi Bajestani A. Alavi M.S. Etemad L. Roohbakhsh A. Role of orphan G-protein coupled receptors in tissue ischemia: A comprehensive review. Eur. J. Pharmacol. 2024 978 176762 10.1016/j.ejphar.2024.176762 38906238
    [Google Scholar]
  45. Liu R. Song P. Gu X. Liang W. Sun W. Hua Q. Zhang Y. Qiu Z. Comprehensive landscape of immune infiltration and aberrant pathway activation in ischemic stroke. Front. Immunol. 2022 12 766724 10.3389/fimmu.2021.766724 35140708
    [Google Scholar]
  46. Kang L. Yu H. Yang X. Zhu Y. Bai X. Wang R. Cao Y. Xu H. Luo H. Lu L. Shi M.J. Tian Y. Fan W. Zhao B.Q. Neutrophil extracellular traps released by neutrophils impair revascularization and vascular remodeling after stroke. Nat. Commun. 2020 11 1 2488 10.1038/s41467‑020‑16191‑y 32427863
    [Google Scholar]
  47. Yan H. Sasaki T. Gon Y. Nishiyama K. Kanki H. Mochizuki H. Driver gene KRAS aggravates cancer-associated stroke outcomes. Thromb. Res. 2024 233 55 68 10.1016/j.thromres.2023.11.015 38029547
    [Google Scholar]
  48. Xie L. Zhang S. Huang L. Peng Z. Lu H. He Q. Chen R. Hu L. Wang B. Sun B. Yang Q. Xie Q. Single-cell RNA sequencing of peripheral blood reveals that monocytes with high cathepsin S expression aggravate cerebral ischemia–reperfusion injury. Brain Behav. Immun. 2023 107 330 344 10.1016/j.bbi.2022.11.001 36371010
    [Google Scholar]
  49. Nagy E.E. Frigy A. Szász J.A. Horváth E. Neuroinflammation and microglia/macrophage phenotype modulate the molecular background of post-stroke depression: A literature review. Exp. Ther. Med. 2020 20 3 2510 2523 10.3892/etm.2020.8933 32765743
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673405347250925073240
Loading
/content/journals/cmc/10.2174/0109298673405347250925073240
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test