Skip to content
2000
image of Cholesteatoma: An Updated Review of Molecular Pathogenesis and Potential Therapeutic Directions

Abstract

Cholesteatoma, an abnormal accumulation of keratinized squamous epithelium in the middle ear, occurs as a locally invasive but histologically benign lesion. Its capacity for bone erosion leads to significant complications, including hearing loss, facial nerve paralysis, and intracranial infections. Chronic inflammation is central to its pathogenesis, with proinflammatory mediators like TNF-α, IL-1β, and IL-6 activating signaling pathways, such as NF-κB, JAK/STAT, and MAPK. These pathways contribute to epithelial hyperproliferation and extracellular matrix degradation mediated by Matrix Metalloproteinases (MMPs). Dysregulation of epithelial cell behavior, involving altered keratinocyte function and reduced E-cadherin-mediated adhesion, may facilitate lesion formation and expansion. Furthermore, aberrant signaling involving growth factors (, EGF, TGF-β) and dysregulation of osteoclast activity the RANKL pathway contribute to enhanced bone erosion and tissue invasion. Emerging research highlights potential roles of the c-MYC proto-oncogene, microRNAs, and Sonic hedgehog signaling in disease progression, offering deeper insights into the pathogenesis. Current management primarily involves surgical excision, yet high recurrence rates emphasize the need for adjunctive therapeutic strategies. Potential future directions include modulating key pathways, such as NF-κB, MMP activity, and RANKL signaling, as well as exploring interventions related to growth factors and cell adhesion. Integrating molecular insights with clinical research is essential for developing strategies to reduce recurrence and improve patient outcomes.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673404489250515074316
2025-05-19
2025-09-10
Loading full text...

Full text loading...

References

  1. Hamed M.A. Nakata S. Sayed R.H. Ueda H. Badawy B.S. Nishimura Y. Kojima T. Iwata N. Ahmed A.R. Dahy K. Kondo N. Suzuki K. Pathogenesis and bone resorption in acquired cholesteatoma: Current knowledge and future prospectives. Clin. Exp. Otorhinolaryngol. 2016 9 4 298 308 10.21053/ceo.2015.01662 27440129
    [Google Scholar]
  2. Schürmann M. Goon P. Sudhoff H. Review of potential medical treatments for middle ear cholesteatoma. Cell Commun. Signal. 2022 20 1 148 10.1186/s12964‑022‑00953‑w 36123729
    [Google Scholar]
  3. Maniu A.P. Harabagiu O. Schrepler M. Cătană A. Fănuţă B. Mogoantă C.A. Molecular biology of cholesteatoma. Rom. J. Morphol. Embryol. 2014 55 1 7 13 24715159
    [Google Scholar]
  4. Khairkar M. Deshmukh P. Maity H. Deotale V. Chronic suppurative otitis media: A comprehensive review of epidemiology, pathogenesis, microbiology, and complications. Cureus 2023 15 8 e43729 10.7759/cureus.43729 37727177
    [Google Scholar]
  5. Louw L. Acquired cholesteatoma: Summary of the cascade of molecular events. J. Laryngol. Otol. 2013 127 6 542 549 10.1017/S0022215113000601 23656971
    [Google Scholar]
  6. Szczepanski M.J. Luczak M. Olszewska E. Molinska-Glura M. Zagor M. Krzeski A. Skarzynski H. Misiak J. Dzaman K. Bilusiak M. Kopec T. Leszczynska M. Witmanowski H. Whiteside T.L. Molecular signaling of the HMGB1/RAGE axis contributes to cholesteatoma pathogenesis. J. Mol. Med. 2015 93 3 305 314 10.1007/s00109‑014‑1217‑3 25385222
    [Google Scholar]
  7. Imai R. Sato T. Iwamoto Y. Hanada Y. Terao M. Ohta Y. Osaki Y. Imai T. Morihana T. Okazaki S. Oshima K. Okuzaki D. Katayama I. Inohara H. Osteoclasts modulate bone erosion in cholesteatoma via RANKL signaling. J. Assoc. Res. Otolaryngol. 2019 20 5 449 459 10.1007/s10162‑019‑00727‑1 31254133
    [Google Scholar]
  8. Karthikeyan M. Mohan V. Purohit P. Sharma V. Soni K. Choudhury B. Banerjee M. Elhence P. Goyal A. Unveiling the aggressiveness of cholesteatoma: Associating MERI with miRNA-21 & IL-6 expression. Laryngoscope 2025 135 1 366 372 10.1002/lary.31737 39390643
    [Google Scholar]
  9. Si Y. Chen Y.B. Chen S.J. Zheng Y.Q. Liu X. Liu Y. Jiang H.L. Xu G. Li Z.H. Huang Q.H. Xiong H. Zhang Z.G. TLR4 drives the pathogenesis of acquired cholesteatoma by promoting local inflammation and bone destruction. Sci. Rep. 2015 5 1 16683 10.1038/srep16683 26639190
    [Google Scholar]
  10. Olszewska E. Wagner M. Bernal-Sprekelsen M. Ebmeyer J. Dazert S. Hildmann H. Sudhoff H. Etiopathogenesis of cholesteatoma. Eur. Arch. Otorhinolaryngol. 2004 261 1 6 24 10.1007/s00405‑003‑0623‑x 12835944
    [Google Scholar]
  11. Dambergs K. Sumeraga G. Pilmane M. Morphopathogenesis of adult acquired cholesteatoma. Medicina 2023 59 2 306 10.3390/medicina59020306 36837507
    [Google Scholar]
  12. Olszewska E. Matulka M. Mroczko B. Pryczynicz A. Kemona A. Szmitkowski M. Mierzwinski J. Pietrewicz T. Diagnostic value of matrix metalloproteinase 9 and tissue inhibitor of matrix metalloproteinases 1 in cholesteatoma. Histol. Histopathol. 2016 31 3 307 315 10.14670/HH‑11‑677 26490574
    [Google Scholar]
  13. Kan T. Ueda H. Takahara T. Tsuchiya Y. Kishimoto M. Uchida Y. Ogawa T. Ohashi W. Tsuzuki T. Fujimoto Y. Association of matrix metalloproteinase-2 mRNA expression with subtypes of pediatric cholesteatoma. BioMed Res. Int. 2021 2021 6644897 10.1155/2021/6644897 33778077
    [Google Scholar]
  14. Mi G.X. Ning Y. Sun K. Tao L.L. Ma X.F. Wang L.Q. Expression of matrix metalloproteinase in cholesteatoma epithelium of patients with cholesteatoma otitis media. J. Biol. Regul. Homeost. Agents 2019 33 6 1843 1848 10.23812/19‑140‑L 31713404
    [Google Scholar]
  15. Rezende C.E.B. Souto R.P. Rapoport P.B. Campos L. Generato M.B. Cholesteatoma gene expression of matrix metalloproteinases and their inhibitors by RT-PCR. Rev. Bras. Otorrinolaringol. 2012 78 3 116 121 10.1590/S1808‑86942012000300019 22714856
    [Google Scholar]
  16. Suchozebrska-Jesionek D. Szymański M. Kurzepa J. Gołabek W. Stryjecka-Zimmer M. Gelatinolytic activity of matrix metalloproteinases 2 and 9 in middle ear cholesteatoma. J. Otolaryngol. Head Neck Surg. 2008 37 5 628 632 19128667
    [Google Scholar]
  17. Ottaviani F. Neglia C.B. Berti E. Francesco Ottaviani, Cesare Bartolo Cytokines and adhesion molecules in middle ear cholesteatoma. A role in epithelial growth? Acta Otolaryngol. 1999 119 4 462 467 10.1080/00016489950181008 10445062
    [Google Scholar]
  18. Bujia J. Sudhoff H. Holly A. Hildmann H. Kastenbauer E. Immunohistochemical detection of proliferating cell nuclear antigen in middle ear cholesteatoma. Eur. Arch. Otorhinolaryngol. 1996 253 1-2 21 24 10.1007/BF00176697 8932424
    [Google Scholar]
  19. Holly A. Sittinger M. Bujia J. Immunohistochemical demonstration of c-myc oncogene product in middle ear cholesteatoma. Eur. Arch. Otorhinolaryngol. 1995 252 6 366 369 10.1007/BF00178279 8679157
    [Google Scholar]
  20. Adriaansens C. Bekkers S. Aarts M.C.J. Determinants influencing cholesteatoma recurrence in daily practice: A retrospective analysis. J. Laryngol. Otol. 2022 136 2 119 124 10.1017/S0022215121003546 35081995
    [Google Scholar]
  21. Morita Y. Takahashi K. Izumi S. Kubota Y. Ohshima S. Yamamoto Y. Takahashi S. Horii A. Risk factors of recurrence in pediatric congenital cholesteatoma. Otol. Neurotol. 2017 38 10 1463 1469 10.1097/MAO.0000000000001587 28953605
    [Google Scholar]
  22. Schürmann M. Oppel F. Shao S. Volland-Thurn V. Kaltschmidt C. Kaltschmidt B. Scholtz L.U. Sudhoff H. Chronic inflammation of middle ear cholesteatoma promotes its recurrence via a paracrine mechanism. Cell Commun. Signal. 2021 19 1 25 10.1186/s12964‑020‑00690‑y 33627146
    [Google Scholar]
  23. Cantone E. Di Nola C. De Corso E. Cavaliere M. Grimaldi G. Fetoni A.R. Motta G. Endotyping of cholesteatoma: Which molecular biomarkers? A systematic review. J. Pers. Med. 2022 12 8 1347 10.3390/jpm12081347 36013295
    [Google Scholar]
  24. Beláková P. Stárek I. Salzman R. Hyravý M. Chronic inflammation of the middle ear with cholesteatoma. Cas. Lek. Cesk. 2019 158 6 235 239 31931582
    [Google Scholar]
  25. Vitale R.F. Ribeiro F.A.Q. The role of tumor necrosis factor -alpha (TNF-α) in bone resorption present in middle ear cholesteatoma. Rev. Bras. Otorrinolaringol. 2007 73 1 117 121 10.1016/S1808‑8694(15)31133‑2 17505610
    [Google Scholar]
  26. Aynali G. Tuz M. Bagcı Ö. Kılıçkaya M. Is there a systemıc inflammatory effect of cholesteatoma? Int. Arch. Otorhinolaryngol. 2016 21 1 42 45 10.1055/s‑0036‑1584363 28050207
    [Google Scholar]
  27. Wiatr A. Job K. Składzień J. Wiatr M. Chronic suppurative otitis media with cholesteatoma and chronic otitis media with granulation by scanning electron microscopy based on analysis of 140 patients. Otolaryngol. Pol. 2021 75 2 1 5 10.5604/01.3001.0014.7011 33949967
    [Google Scholar]
  28. Xie S. Jin L. Fu J. Yuan Q. Yin T. Ren J. Liu W. PTHrP participates in the bone destruction of middle ear cholesteatoma via promoting macrophage differentiation into osteoclasts induced by RANKL. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2024 49 5 655 666 10.11817/j.issn.1672‑7347.2024.230482 39174879
    [Google Scholar]
  29. Heo K.W. Noh M. Hur D.Y. Hong T.U. Park S.Y. Kim W.J. Bone destruction in chronic otitis media is not mediated by the RANKL pathway or estrogen receptor-alpha. Sci. Prog. 2023 106 3 368504231199204 10.1177/00368504231199204 37697808
    [Google Scholar]
  30. Siwik D.A. Colucci W.S. Regulation of matrix metalloproteinases by cytokines and reactive oxygen/nitrogen species in the myocardium. Heart Fail. Rev. 2004 9 1 43 51 10.1023/B:HREV.0000011393.40674.13 14739767
    [Google Scholar]
  31. Hamajima Y. Komori M. Preciado D.A. Choo D.I. Moribe K. Murakami S. Ondrey F.G. Lin J. The role of inhibitor of DNA-binding (Id1) in hyperproliferation of keratinocytes: The pathological basis for middle ear cholesteatoma from chronic otitis media. Cell Prolif. 2010 43 5 457 463 10.1111/j.1365‑2184.2010.00695.x 20887552
    [Google Scholar]
  32. Liu W. Yin T. Ren J. Li L. Xiao Z. Chen X. Xie D. Activation of the EGFR/Akt/NF-κB/cyclinD1 survival signaling pathway in human cholesteatoma epithelium. Eur. Arch. Otorhinolaryngol. 2014 271 2 265 273 10.1007/s00405‑013‑2403‑6 23463347
    [Google Scholar]
  33. Preciado D. Caicedo E. Jhanjee R. Silver R. Harris G. Juhn S.K. Choo D.I. Ondrey F. Pseudomonas aeruginosa lipopolysaccharide induction of keratinocyte proliferation, NF-kappa B, and cyclin D1 is inhibited by indomethacin. J. Immunol. 2005 174 5 2964 2973 10.4049/jimmunol.174.5.2964 15728509
    [Google Scholar]
  34. Westerberg J. Tideholm E. Piersiala K. Drakskog C. Georén S.K. Mäki-Torkko E. Cardell L.O. JAK/STAT dysregulation with SOCS1 overexpression in acquired cholesteatoma-adjacent mucosa. Otol. Neurotol. 2021 42 1 e94 e100 10.1097/MAO.0000000000002850 33201080
    [Google Scholar]
  35. Eskiizmir G. Vatansever H.S. Özgür E. Aslan A. Tanyeri G. Gözüaçık D. Özbilgin M.K. Cingi C. Jak-Stat signaling pathway may play a role in the pathogenesis of cholesteatoma. Am. J. Otolaryngol. 2014 35 2 130 136 10.1016/j.amjoto.2013.10.005 24321752
    [Google Scholar]
  36. Wajant H. Pfizenmaier K. Scheurich P. Tumor necrosis factor signaling. Cell Death Differ. 2003 10 1 45 65 10.1038/sj.cdd.4401189 12655295
    [Google Scholar]
  37. Teitelbaum S.L. Bone resorption by osteoclasts. Science 2000 289 5484 1504 1508 10.1126/science.289.5484.1504 10968780
    [Google Scholar]
  38. Epsley S. Tadros S. Farid A. Kargilis D. Mehta S. Rajapakse C.S. The effect of inflammation on bone. Front. Physiol. 2021 11 511799 10.3389/fphys.2020.511799 33584321
    [Google Scholar]
  39. Jeong J.H. Park C.W. Tae K. Lee S.H. Shin D.H. Kim K.R. Park Y.W. Expression of RANKL and OPG in middle ear cholesteatoma tissue. Laryngoscope 2006 116 7 1180 1184 10.1097/01.mlg.0000224345.59291.da 16826057
    [Google Scholar]
  40. Udagawa N. Koide M. Nakamura M. Nakamichi Y. Yamashita T. Uehara S. Kobayashi Y. Furuya Y. Yasuda H. Fukuda C. Tsuda E. Osteoclast differentiation by RANKL and OPG signaling pathways. J. Bone Miner. Metab. 2021 39 1 19 26 10.1007/s00774‑020‑01162‑6 33079279
    [Google Scholar]
  41. Kuczkowski J. Sakowicz-Burkiewicz M. Iżycka-Świeszewska E. Mikaszewski B. Pawełczyk T. Expression of tumor necrosis factor-α, interleukin-1α, interleukin-6 and interleukin-10 in chronic otitis media with bone osteolysis. ORL J. Otorhinolaryngol. Relat. Spec. 2011 73 2 93 99 10.1159/000323831 21311206
    [Google Scholar]
  42. Zhang W. Bado I.L. Hu J. Wan Y.W. Wu L. Wang H. Gao Y. Jeong H.H. Xu Z. Hao X. Lege B.M. Al-Ouran R. Li L. Li J. Yu L. Singh S. Lo H.C. Niu M. Liu J. Jiang W. Li Y. Wong S.T.C. Cheng C. Liu Z. Zhang X.H.F. The bone microenvironment invigorates metastatic seeds for further dissemination. Cell 2021 184 9 2471 2486.e20 10.1016/j.cell.2021.03.011 33878291
    [Google Scholar]
  43. Wu Y. Tang X. Shao W. Lu Y. Effect of CT manifestations of cholesteatoma on MMP-2, MMP-9 and IL-6 in the serum of patients. Exp. Ther. Med. 2019 17 6 4441 4446 10.3892/etm.2019.7484 31086579
    [Google Scholar]
  44. Morales D.S.R. Penido N.O. Guerreiro da Silva I.D.C. Stávale J.N. Guilherme A. Fukuda Y. Matrix Metalloproteinase 2: An important genetic marker for cholesteatomas. Rev. Bras. Otorrinolaringol. 2007 73 1 51 57 10.1016/S1808‑8694(15)31122‑8 17505599
    [Google Scholar]
  45. Özdemir Ç. Kuzu S. Şenol Y. Yiğit T. Güldün E. Bucak A. Ulu Ş. Tokyol Ç. A role for mast cell-mediated antibodies in the formation of cholesteatoma and cholesteatoma-induced bone erosion. Diagnostics 2023 13 3 455 10.3390/diagnostics13030455 36766559
    [Google Scholar]
  46. Moghaddam Y.J. Germi M.N. Alamdary S.N. Emami M. Shanehbandi D. Soofiyani S.R. Matrix metallopeptidase 9 expression in tumoral and marginal tissues of cholesteatoma. ImmunoAnalysis 2024 4 8 10.34172/ia.4084
    [Google Scholar]
  47. Yoshikawa M. Kojima H. Yaguchi Y. Okada N. Saito H. Moriyama H. Cholesteatoma fibroblasts promote epithelial cell proliferation through overexpression of epiregulin. PLoS One 2013 8 6 e66725 10.1371/journal.pone.0066725 23826119
    [Google Scholar]
  48. Rolesi R. Paciello F. Paludetti G. De Corso E. Sergi B. Fetoni A. Study of angiogenic, pro-apoptotic, and pro-inflammatory factors in congenital and acquired cholesteatomas. J. Pers. Med. 2023 13 8 1189 10.3390/jpm13081189 37623440
    [Google Scholar]
  49. Yamamoto-Fukuda T. Akiyama N. Keratinocyte growth factor signaling promotes stem/progenitor cell proliferation under p63 expression during middle ear cholesteatoma formation. Curr. Opin. Otolaryngol. Head Neck Surg. 2020 28 5 291 295 10.1097/MOO.0000000000000655 32796271
    [Google Scholar]
  50. Liu W. Ren H. Ren J. Yin T. Hu B. Xie S. Dai Y. Wu W. Xiao Z. Yang X. Xie D. The role of EGFR/PI3K/Akt/cyclinD1 signaling pathway in acquired middle ear cholesteatoma. Mediators Inflamm. 2013 2013 1 9 10.1155/2013/651207 24311896
    [Google Scholar]
  51. Zhang W. Liu H.T. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 2002 12 1 9 18 10.1038/sj.cr.7290105 11942415
    [Google Scholar]
  52. Hossini A.M. Quast A.S. Plötz M. Grauel K. Exner T. Küchler J. Stachelscheid H. Eberle J. Rabien A. Makrantonaki E. Zouboulis C.C. PI3K/AKT signaling pathway is essential for survival of induced pluripotent stem cells. PLoS One 2016 11 5 e0154770 10.1371/journal.pone.0154770 27138223
    [Google Scholar]
  53. Habib A.A. Chatterjee S. Park S.K. Ratan R.R. Lefebvre S. Vartanian T. The epidermal growth factor receptor engages receptor interacting protein and nuclear factor-kappa B (NF-kappa B)-inducing kinase to activate NF-kappa B. Identification of a novel receptor-tyrosine kinase signalosome. J. Biol. Chem. 2001 276 12 8865 8874 10.1074/jbc.M008458200
    [Google Scholar]
  54. Takahashi M. Yamamoto-Fukuda T. Akiyama N. Motegi M. Yamamoto K. Tanaka Y. Yamamoto Y. Kojima H. Partial epithelial-mesenchymal transition was observed under p63 expression in acquired middle ear cholesteatoma and congenital cholesteatoma. Otol. Neurotol. 2019 40 8 e803 e811 10.1097/MAO.0000000000002328 31348131
    [Google Scholar]
  55. Huisman M.A. de Heer E. Dijke P.T. Grote J.J. Transforming growth factor beta and wound healing in human cholesteatoma. Laryngoscope 2008 118 1 94 98 10.1097/MLG.0b013e31814faafa 17989584
    [Google Scholar]
  56. Zeng L. Xie L. Hu J. He C. Liu A. Lu X. Zhou W. Osteopontin-driven partial epithelial-mesenchymal transition governs the development of middle ear cholesteatoma. Cell Cycle 2024 23 5 537 554 10.1080/15384101.2024.2345481 38662954
    [Google Scholar]
  57. Takeichi M. Cadherin cell adhesion receptors as a morphogenetic regulator. Science 1991 251 5000 1451 1455 10.1126/science.2006419 2006419
    [Google Scholar]
  58. Lee D.W. Chung J.H. Lee S.H. Park C.W. Kang S.H. Oh Y.H. Pyo J.Y. Comparative analysis of the expression of E-cadherin, β-catenin, and β1 integrin in congenital and acquired cholesteatoma. Eur. Arch. Otorhinolaryngol. 2016 273 4 845 851 10.1007/s00405‑015‑3621‑x 25864182
    [Google Scholar]
  59. van der Wal T. van Amerongen R. Walking the tight wire between cell adhesion and WNT signalling: A balancing act for β-catenin. Open Biol. 2020 10 12 200267 10.1098/rsob.200267 33292105
    [Google Scholar]
  60. Azbazdar Y. Karabicici M. Erdal E. Ozhan G. Regulation of Wnt signaling pathways at the plasma membrane and their misregulation in cancer. Front. Cell Dev. Biol. 2021 9 631623 10.3389/fcell.2021.631623 33585487
    [Google Scholar]
  61. Giancotti F.G. Ruoslahti E. Integrin Signaling. Science 1999 285 5430 1028 1033 10.1126/science.285.5430.1028 10446041
    [Google Scholar]
  62. Dallari S. Cavani A. Bergamini G. Girolomoni G. Integrin expression in middle ear cholesteatoma. Acta Otolaryngol. 1994 114 2 188 192 10.3109/00016489409126040 7515549
    [Google Scholar]
  63. Ambros V. The functions of animal microRNAs. Nature 2004 431 7006 350 355 10.1038/nature02871 15372042
    [Google Scholar]
  64. Chen X. Qin Z. Post-transcriptional regulation by microrna-21 and let-7a microRNA in paediatric cholesteatoma. J. Int. Med. Res. 2011 39 6 2110 2118 10.1177/147323001103900607 22289526
    [Google Scholar]
  65. Friedland D.R. Eernisse R. Erbe C. Gupta N. Cioffi J.A. Cholesteatoma growth and proliferation: Posttranscriptional regulation by microRNA-21. Otol. Neurotol. 2009 30 7 998 1005 10.1097/MAO.0b013e3181b4e91f 19672202
    [Google Scholar]
  66. Yao R. Ma Y.L. Liang W. Li H.H. Ma Z.J. Yu X. Liao Y.H. MicroRNA-155 modulates Treg and Th17 cells differentiation and Th17 cell function by targeting SOCS1. PLoS One 2012 7 10 e46082 10.1371/journal.pone.0046082 23091595
    [Google Scholar]
  67. Lena A.M. Shalom-Feuerstein R. di Val Cervo P.R. Aberdam D. Knight R.A. Melino G. Candi E. miR-203 represses ‘stemness’ by repressing ΔNp63. Cell Death Differ. 2008 15 7 1187 1195 10.1038/cdd.2008.69 18483491
    [Google Scholar]
  68. Kasinathan J.R. Muthukkaruppan V. Priya C.G. miR-203 inhibits ΔNp63α dependent clonogenicity in corneal epithelial stem cells (CESCs). Invest. Ophthalmol. Vis. Sci. 2015 56 4899 4899
    [Google Scholar]
  69. Wang M-J. Xu Y-Y. Vos H. Gulersonmez C. Stigter E. Gerritsen J. Hsa-miR-31-5p controls a metabolic switch in psoriatic keratinocytes that identifies therapeutic intervention. bioRxiv 2022 10.1101/2022.01.21.477183
    [Google Scholar]
  70. Bardua M. Haftmann C. Durek P. Westendorf K. Buttgereit A. Tran C.L. McGrath M. Weber M. Lehmann K. Addo R.K. Heinz G.A. Stittrich A.B. Maschmeyer P. Radbruch H. Lohoff M. Chang H.D. Radbruch A. Mashreghi M.F. MicroRNA-31 reduces the motility of proinflammatory T helper 1 lymphocytes. Front. Immunol. 2018 9 2813 10.3389/fimmu.2018.02813 30574141
    [Google Scholar]
  71. MIR31 microRNA 31 [ Homo sapiens (human) ]. Available from: https://www.ncbi.nlm.nih.gov/gene/407035
  72. Yang F. Li Q. Gong Z. Zhou L. You N. Wang S. Li X. Li J. An J. Wang D. He Y. Dou K. MicroRNA-34a targets Bcl-2 and sensitizes human hepatocellular carcinoma cells to sorafenib treatment. Technol. Cancer Res. Treat. 2014 13 1 77 86 10.7785/tcrt.2012.500364 23862748
    [Google Scholar]
  73. Ingham P.W. Hedgehog signaling. Curr. Top. Dev. Biol. 2022 149 1 58 10.1016/bs.ctdb.2022.04.003 35606054
    [Google Scholar]
  74. Dambergs K. Sumeraga G. Pilmane M. Complex evaluation of tissue factors in pediatric cholesteatoma. Children 2021 8 10 926 10.3390/children8100926 34682191
    [Google Scholar]
  75. Dambergs K. Sumeraga G. Pilmane M. Comparison of tissue factors in the ontogenetic aspects of human cholesteatoma. Diagnostics 2024 14 6 662 10.3390/diagnostics14060662 38535082
    [Google Scholar]
  76. Palkó E. Póliska S. Csákányi Z. Katona G. Karosi T. Helfferich F. Penyige A. Sziklai I. The c-MYC protooncogene expression in cholesteatoma. BioMed Res. Int. 2014 2014 1 6 10.1155/2014/639896 24683550
    [Google Scholar]
  77. Ozturk K. Yildirim M.S. Acar H. Cenik Z. Keles B. Evaluation of c-MYC status in primary acquired cholesteatoma by using fluorescence in situ hybridization technique. Otol. Neurotol. 2006 27 5 588 591 10.1097/01.mao.0000226290.04048.d9 16868505
    [Google Scholar]
  78. Li Y.J. Wei Z-M. Meng Y-X. Ji X-R. β-catenin up-regulates the expression of cyclinD1, c-myc and MMP-7 in human pancreatic cancer: Relationships with carcinogenesis and metastasis. World J. Gastroenterol. 2005 11 14 2117 2123 10.3748/wjg.v11.i14.2117 15810077
    [Google Scholar]
  79. Lu Q. Hong W. Bcl2 enhances c-Myc-mediated MMP-2 expression of vascular smooth muscle cells. Cell. Signal. 2009 21 7 1054 1059 10.1016/j.cellsig.2009.02.020 19258038
    [Google Scholar]
  80. Schürmann M. Greiner J.F.W. Volland-Thurn V. Oppel F. Kaltschmidt C. Sudhoff H. Kaltschmidt B. Stem cell-induced inflammation in cholesteatoma is inhibited by the TLR4 antagonist LPS-RS. Cells 2020 9 1 199 10.3390/cells9010199 31947538
    [Google Scholar]
  81. Sehnert B. Burkhardt H. Wessels J.T. Schröder A. May M.J. Vestweber D. Zwerina J. Warnatz K. Nimmerjahn F. Schett G. Dübel S. Voll R.E. NF-κB inhibitor targeted to activated endothelium demonstrates a critical role of endothelial NF-κB in immune-mediated diseases. Proc. Natl. Acad. Sci. USA 2013 110 41 16556 16561 10.1073/pnas.1218219110 24062461
    [Google Scholar]
  82. Body J.J. Bone H.G. de Boer R.H. Stopeck A. Van Poznak C. Damião R. Fizazi K. Henry D.H. Ibrahim T. Lipton A. Saad F. Shore N. Takano T. Shaywitz A.J. Wang H. Bracco O.L. Braun A. Kostenuik P.J. Hypocalcaemia in patients with metastatic bone disease treated with denosumab. Eur. J. Cancer 2015 51 13 1812 1821 10.1016/j.ejca.2015.05.016 26093811
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673404489250515074316
Loading
/content/journals/cmc/10.2174/0109298673404489250515074316
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: bone resorption ; pathogenesis ; molecular mechanism ; inflammation ; therapy ; Cholesteatoma
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test